Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells

被引:16
作者
Cheng, Kaiming [1 ,2 ]
Xu, Huixia [2 ,3 ,4 ]
Zhang, Lijun [4 ]
Zhou, Jixue [1 ]
Wang, Xitao [1 ]
Du, Yong [1 ,4 ]
Chen, Ming [2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Adv Mat Inst, Shandong Prov Key Lab High Strength Lightweight M, Jinan, Peoples R China
[2] Tech Univ Denmark, Dept Energy Convers & Storage, Lyngby Campus, Lyngby, Denmark
[3] Qilu Univ Technol, Shandong Acad Sci, Shandong Anal & Test Ctr, Engn Res Ctr Failure Anal & Safety Assessment, Jinan, Peoples R China
[4] Cent South Univ, State Key Lab Powder Met, Changsha, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
TAPE CAST LAYERS; SRZRO3; FORMATION; GRAIN-GROWTH; NUMERICAL-SIMULATION; IMPURITY DIFFUSION; BARRIER LAYERS; DOPED CERIA; CATHODE; TEMPERATURE; ZIRCONIA;
D O I
10.1038/s41524-021-00584-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ce0.8Gd0.2O2-delta (CGO) interlayer is commonly applied in solid oxide fuel cells (SOFCs) to prevent chemical reactions between the (La1-xSrx)(Co1-yFey)O3-delta (LSCF) oxygen electrode and the Y2O3-stabilized ZrO2 (YSZ) electrolyte. However, formation of the YSZ-CGO solid solution with low ionic conductivity and the SrZrO3 (SZO) insulating phase still happens during cell production and long-term operation, causing poor performance and degradation. Unlike many experimental investigations exploring these phenomena, consistent and quantitative computational modeling of the microstructure evolution at the oxygen electrode-electrolyte interface is scarce. We combine thermodynamic, 1D kinetic, and 3D phase-field modeling to computationally reproduce the element redistribution, microstructure evolution, and corresponding ohmic loss of this interface. The influences of different ceramic processing techniques for the CGO interlayer, i.e., screen printing and physical laser deposition (PLD), and of different processing and long-term operating parameters are explored, representing a successful case of quantitative computational engineering of the oxygen electrode-electrolyte interface in SOFCs.
引用
收藏
页数:10
相关论文
共 60 条
[11]  
German RM, 2014, SINTERING: FROM EMPIRICAL OBSERVATIONS TO SCIENTIFIC PRINCIPLES, P1
[12]   Experimentation and thermodynamic modelling on SrZrO3 [J].
Gong Wei-ping ;
Chen Teng-fei ;
Liu Yong ;
Li Da-jian ;
Jin Zhan-peng ;
Huang Bai-yun .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (04) :739-743
[13]   ON THE ROLE OF DISLOCATIONS IN BULK DIFFUSION [J].
HART, EW .
ACTA METALLURGICA, 1957, 5 (10) :597-597
[14]   Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95-δ in a reducing atmosphere [J].
He, Zeming ;
Yuan, Hao ;
Glasscock, Julie Anne ;
Chatzichristodoulou, Christodoulos ;
Phair, John William ;
Kaiser, Andreas ;
Ramousse, Severine .
ACTA MATERIALIA, 2010, 58 (11) :3860-3866
[15]   The compound energy formalism [J].
Hillert, M .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 320 (02) :161-176
[16]   Ceria-Zirconia Composite Electrolyte for Solid Oxide Fuel Cells [J].
Tatsuya Kawada ;
Harumi Yokokawa ;
Masayuki Dokiya ;
Natsuko Sakai ;
Teruhisa Horita ;
Jan Van Herle ;
Kazutaka Sasaki .
Journal of Electroceramics, 1997, 1 (2) :155-164
[17]   Materials for Solid Oxide Fuel Cells [J].
Jacobson, Allan J. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :660-674
[18]   Ce0.8Gd0.2O2-δ protecting layers manufactured by physical vapor deposition for IT-SOFC [J].
Jordan, N. ;
Assenmacher, W. ;
Uhlenbruck, S. ;
Haanappel, V. A. C. ;
Buchkremer, H. P. ;
Stoever, D. ;
Mader, W. .
SOLID STATE IONICS, 2008, 179 (21-26) :919-923
[19]   Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation [J].
Kiebach, Ragnar ;
Zhang, Wei-Wei ;
Zhang, Wei ;
Chen, Ming ;
Norrman, Kion ;
Wang, Hsiang-Jen ;
Bowen, Jacob R. ;
Barfod, Rasmus ;
Hendriksen, Peter Yang .
JOURNAL OF POWER SOURCES, 2015, 283 :151-161
[20]   Materials for Intermediate-Temperature Solid-Oxide Fuel Cells [J].
Kilner, John A. ;
Burriel, Monica .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 44, 2014, 44 :365-393