Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells

被引:16
作者
Cheng, Kaiming [1 ,2 ]
Xu, Huixia [2 ,3 ,4 ]
Zhang, Lijun [4 ]
Zhou, Jixue [1 ]
Wang, Xitao [1 ]
Du, Yong [1 ,4 ]
Chen, Ming [2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Adv Mat Inst, Shandong Prov Key Lab High Strength Lightweight M, Jinan, Peoples R China
[2] Tech Univ Denmark, Dept Energy Convers & Storage, Lyngby Campus, Lyngby, Denmark
[3] Qilu Univ Technol, Shandong Acad Sci, Shandong Anal & Test Ctr, Engn Res Ctr Failure Anal & Safety Assessment, Jinan, Peoples R China
[4] Cent South Univ, State Key Lab Powder Met, Changsha, Peoples R China
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
TAPE CAST LAYERS; SRZRO3; FORMATION; GRAIN-GROWTH; NUMERICAL-SIMULATION; IMPURITY DIFFUSION; BARRIER LAYERS; DOPED CERIA; CATHODE; TEMPERATURE; ZIRCONIA;
D O I
10.1038/s41524-021-00584-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ce0.8Gd0.2O2-delta (CGO) interlayer is commonly applied in solid oxide fuel cells (SOFCs) to prevent chemical reactions between the (La1-xSrx)(Co1-yFey)O3-delta (LSCF) oxygen electrode and the Y2O3-stabilized ZrO2 (YSZ) electrolyte. However, formation of the YSZ-CGO solid solution with low ionic conductivity and the SrZrO3 (SZO) insulating phase still happens during cell production and long-term operation, causing poor performance and degradation. Unlike many experimental investigations exploring these phenomena, consistent and quantitative computational modeling of the microstructure evolution at the oxygen electrode-electrolyte interface is scarce. We combine thermodynamic, 1D kinetic, and 3D phase-field modeling to computationally reproduce the element redistribution, microstructure evolution, and corresponding ohmic loss of this interface. The influences of different ceramic processing techniques for the CGO interlayer, i.e., screen printing and physical laser deposition (PLD), and of different processing and long-term operating parameters are explored, representing a successful case of quantitative computational engineering of the oxygen electrode-electrolyte interface in SOFCs.
引用
收藏
页数:10
相关论文
共 60 条
[1]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[2]   Impurity diffusion of cerium and gadolinium in single- and polycrystalline yttria-stabilized zirconia [J].
Bekale, V. Menvie ;
Huntz, A. M. ;
Legros, C. ;
Sattonnay, G. ;
Jomard, F. .
PHILOSOPHICAL MAGAZINE, 2008, 88 (01) :1-19
[3]   Impurity diffusion of Hf and Zr in Gd-doped CeO2 [J].
Beschnitt, Stefan ;
De Souza, Roger A. .
SOLID STATE IONICS, 2017, 305 :23-29
[4]   Phase field simulation of equiaxed solidification in technical alloys [J].
Boettger, B. ;
Eiken, J. ;
Steinbach, I. .
ACTA MATERIALIA, 2006, 54 (10) :2697-2704
[5]   Grain growth in CeO2: Dopant effects, defect mechanism, and solute drag [J].
Chen, PL ;
Chen, IW .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (07) :1793-1800
[6]   Numerical Simulation of the SrZrO3 Formation in Solid Oxide Fuel Cells [J].
Cheng, Kaiming ;
Xu, Huixia ;
Zhang, Lijun ;
Du, Yong ;
Zhou, Jixue ;
Tang, Shouqiu ;
Chen, Ming .
JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (09) :5510-5515
[7]   Mechanism of SrZrO3 Formation at GDC/YSZ Interface of SOFC Cathode [J].
Chou, Jyh-Tyng ;
Inoue, Yuko ;
Kawabata, Tsutomu ;
Matsuda, Junko ;
Taniguchi, Shunsuke ;
Sasaki, Kazunari .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :F959-F965
[8]   Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ-CO2-O2 system for application in solid oxide fuel cells [J].
Darvish, Shadi ;
Gopalan, Srikanth ;
Zhong, Yu .
JOURNAL OF POWER SOURCES, 2016, 336 :351-359
[9]   Mobility transition at grain boundaries in two-step sintered 8mol% yttria-stabilized zirconia [J].
Dong, Yanhao ;
Chen, I-Wei .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (05) :1857-1869
[10]   THERMODYNAMIC EVALUATION OF THE ZRO2-CEO2 SYSTEM [J].
DU, Y ;
YASHIMA, M ;
KOURA, T ;
KAKIHANA, M ;
YOSHIMURA, M .
SCRIPTA METALLURGICA ET MATERIALIA, 1994, 31 (03) :327-332