Asymmetric supercapacitors based on nickel decorated graphene and porous graphene electrodes

被引:28
作者
Morenghi, Alberto [1 ,2 ]
Scaravonati, Silvio [1 ,2 ]
Magnani, Giacomo [1 ,2 ]
Sidoli, Michele [1 ,2 ]
Aversa, Lucrezia [3 ]
Verucchi, Roberto [3 ]
Bertoni, Giovanni [4 ]
Ricco, Mauro [1 ,2 ]
Pontiroli, Daniele [1 ,2 ]
机构
[1] Univ Parma, Nanocarbon Lab, INSTM, Parco Area Sci 7-A, I-43124 Parma, Italy
[2] Univ Parma, Dept Math Phys & Comp Sci, Parco Area Sci 7-A, I-43124 Parma, Italy
[3] Trento site c o Fdn Bruno Kessler, IMEM CNR Inst Mat Elect & Magnetism, Via Cascata 56-C, I-38123 Trento, Italy
[4] CNR Ist Nanosci, Via Campi 213-A, I-41125 Modena, Italy
关键词
Graphene; Ni-nanoparticles; Asymmetric supercapacitors; Energy storage; X-RAY; CARBON NANOTUBES; ACTIVATED CARBON; ENERGY-STORAGE; OXIDE; NANOPARTICLES; PERFORMANCE; NI(OH)(2); METAL; MECHANISMS;
D O I
10.1016/j.electacta.2022.140626
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Thermal exfoliation of graphite oxide is a scalable way to produce macroscopic amount of defective graphenebased compounds with high specific surface area, ideal as electrode materials in high-performance electrochemical supercapacitors. In order to increase the stored energy, defective graphene has been decorated with Ni nanoparticles without exposing the system to air. During the first charge cycle in an aqueous electrolyte (KOH 3.5 M), Ni anchored to graphene proved to easily convert to Ni(OH)2 at the nanoscale and hence to reversibly assume Ni2+ and Ni3+ valence during cyclic voltammetry, through its conversion to NiOOH. Such reversible faradaic mechanism led to a one order of magnitude increase of the specific capacitance of electrodes, reaching up to 1900 F/g at 2 mV/s in KOH 3.5 M. An asymmetric supercapacitor was obtained by coupling a pure graphene negative electrode with a Ni decorated graphene positive one. The supercapacitor, operating with aqueous electrolyte, was successfully cycled in the 0-1.5 V voltage range, reaching a maximum specific energy of 37 Wh/ kg and a maximum specific power of 5 kW/kg. The devices displayed good reversibility and retained 72% of the specific energy over 10 thousand of cycles. Such promising results disclose to possible industrial implementation of graphene-based supercapacitors, for a wide range of energetic application.
引用
收藏
页数:8
相关论文
共 64 条
[21]   Cellulose Tailored Anatase TiO2 Nanospindles in Three-Dimensional Graphene Composites for High-Performance Supercapacitors [J].
Ding, Yangbin ;
Bai, Wei ;
Sun, Jinhua ;
Wu, Yu ;
Memon, Mushtaque A. ;
Wang, Chao ;
Liu, Chengbin ;
Huang, Yong ;
Geng, Jianxin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) :12165-12175
[22]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[23]   Thermally reduced graphene oxide: synthesis, studies and characterization [J].
Ferreira Oliveira, Ana Elisa ;
Braga, Guilherme Bettio ;
Teixeira Tarley, Cesar Ricardo ;
Pereira, Arnaldo Cesar .
JOURNAL OF MATERIALS SCIENCE, 2018, 53 (17) :12005-12015
[24]   In situ decoration of laser-scribed graphene with TiO2 nanoparticles for scalable high-performance micro-supercapacitors [J].
Fornasini, Laura ;
Scaravonati, Silvio ;
Magnani, Giacomo ;
Morenghi, Alberto ;
Sidoli, Michele ;
Bersani, Danilo ;
Bertoni, Giovanni ;
Aversa, Lucrezia ;
Verucchi, Roberto ;
Ricco, Mauro ;
Lottici, Pier Paolo ;
Pontiroli, Daniele .
CARBON, 2021, 176 :296-306
[25]   Platinum carbonyl clusters decomposition on defective graphene surface [J].
Gaboardi, Mattia ;
Tatti, Roberta ;
Bertoni, Giovanni ;
Magnani, Giacomo ;
Della Pergola, Roberto ;
Aversa, Lucrezia ;
Verucchi, Roberto ;
Pontiroli, Daniele ;
Ricco, Mauro .
SURFACE SCIENCE, 2020, 691
[26]   Optimal hydrogen storage in sodium substituted lithium fullerides [J].
Gaboardi, Mattia ;
Milanese, Chiara ;
Magnani, Giacomo ;
Girella, Alessandro ;
Pontiroli, Daniele ;
Cofrancesco, Pacifico ;
Marini, Amedeo ;
Ricco, Mauro .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (33) :21980-21986
[27]   Decoration of graphene with nickel nanoparticles: study of the interaction with hydrogen [J].
Gaboardi, Mattia ;
Bliersbach, Andreas ;
Bertoni, Giovanni ;
Aramini, Matteo ;
Vlahopoulou, Gina ;
Pontiroli, Daniele ;
Mauron, Philippe ;
Magnani, Giacomo ;
Salviati, Giancarlo ;
Zuettel, Andreas ;
Ricco, Mauro .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (04) :1039-1046
[28]   White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides -: art. no. 235103 [J].
Graetz, J ;
Ahn, CC ;
Ouyang, H ;
Rez, P ;
Fultz, B .
PHYSICAL REVIEW B, 2004, 69 (23) :235103-1
[29]   New interpretations of XPS spectra of nickel metal and oxides [J].
Grosvenor, Andrew P. ;
Biesinger, Mark C. ;
Smart, Roger St. C. ;
McIntyre, N. Stewart .
SURFACE SCIENCE, 2006, 600 (09) :1771-1779
[30]   An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode [J].
Hassoun, Jusef ;
Bonaccorso, Francesco ;
Agostini, Marco ;
Angelucci, Marco ;
Betti, Maria Grazia ;
Cingolani, Roberto ;
Gemmi, Mauro ;
Mariani, Carlo ;
Panero, Stefania ;
Pellegrini, Vittorio ;
Scrosati, Bruno .
NANO LETTERS, 2014, 14 (08) :4901-4906