Non-Local Extension of Total Variation Regularization for Image Restoration

被引:0
作者
Liu, Hangfan [1 ]
Xiong, Ruiqin [1 ]
Ma, Siwei [1 ]
Fan, Xiaopeng [2 ]
Gao, Wen [1 ]
机构
[1] Peking Univ, Inst Digital Media, Beijing 100871, Peoples R China
[2] Harbin Inst Technol, Dept Comp Sci, Harbin 150001, Peoples R China
来源
2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2014年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
TOTAL VARIATION MINIMIZATION; ALGORITHM; RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Total-variation (TV) regularization is widely adopted in image restoration problems to exploit the feature that natural images are smooth with small gradient values at most regions. Basic TV method assumes identical zero-mean Laplacian distribution for the gradients at all pixels. However, for real-world images, the statistics of gradients may not be stationary, and the zero-mean assumption of gradients may not be valid either for a specific pixel. This paper presents a non-local extension of TV regularization for image restoration, called Non-Local Gradient Sparsity Regularization (NGSR). The NGSR model employs a separate gradient value distribution for each pixel. To figure out the distribution parameters, the NGSR method exploits a set of patches which are similar to the patch centered at current pixel and estimates the distribution parameter adaptively. Experimental results demonstrate that the proposed NGSR outperforms traditional TV remarkably for image restoration.
引用
收藏
页码:1102 / 1105
页数:4
相关论文
共 12 条
[1]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]   SPLIT BREGMAN METHODS AND FRAME BASED IMAGE RESTORATION [J].
Cai, Jian-Feng ;
Osher, Stanley ;
Shen, Zuowei .
MULTISCALE MODELING & SIMULATION, 2009, 8 (02) :337-369
[4]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[5]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[6]  
Chan T., 2004, 0501 CAM UCLA DEP MA
[7]   An Alternating l1 Approach to the Compressed Sensing Problem [J].
Chretien, Stephane .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (02) :181-184
[8]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[9]   Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images [J].
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (05) :1395-1411
[10]   The Split Bregman Method for L1-Regularized Problems [J].
Goldstein, Tom ;
Osher, Stanley .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (02) :323-343