Energy ordering of catacondensed hexagonal systems

被引:29
作者
Rada, J [1 ]
机构
[1] Univ Los Andes, Fac Ciencias, Dept Matemat, Merida 5101, Venezuela
关键词
energy; hexagonal systems; catacondensed systems; hexagonal chains; cycles; quasi-order;
D O I
10.1016/j.dam.2004.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of a graph G is defined as E(G) =Sigma(i)(=1)(n)\lambda(i)\, where lambda(i) (i = 1,..., n) are the eigenvalues of G. In this work we define the coalescence of two graphs with respect to (oriented) edges, and show that for the graphs X and Y in Fig. 2, which are obtained by coalescence of bipartite graphs around the six-vertex cycle C-6, E(X) greater than or equal to E(Y). As a by-product, we give energy ordering relations in the class of catacondensed hexagonal systems. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:437 / 443
页数:7
相关论文
共 15 条
[1]  
[Anonymous], TOPICS CURRENT CHEM
[2]  
[Anonymous], 1978, Ber. Math.-Stat. Sekt. Forsch-Zent. Graz, V103, P1, DOI DOI 10.1016/J.LAA.2004.02.038
[3]  
Cvetkovic D. M., 1980, Spectra of Graphs-Theory and Application
[4]  
CYVIN SJ, 1988, KEKULE STRUCTURES BE
[5]   ACYCLIC SYSTEMS WITH EXTREMAL HUCKEL PI-ELECTRON ENERGY [J].
GUTMAN, I .
THEORETICA CHIMICA ACTA, 1977, 45 (02) :79-87
[6]  
Gutman I., 1989, INTRO THEORY BENZENO, DOI [DOI 10.1007/978-3-642-87143-6_5, 10.1007/978-3-642-87143-6, DOI 10.1007/978-3-642-87143-6]
[7]  
Gutman I., 1986, Mathematical Concepts in Organic Chemistry, DOI 10.1007/978-3-642-70982-1
[8]  
Gutmann I, 2001, MATCH-COMMUN MATH CO, P17
[9]  
HOU Y, 2002, LINEAR MULTILINEAR A, V49, P347
[10]   Unicyclic graphs with minimal energy [J].
Hou, YP .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (03) :163-168