A Note on Dimension Modules

被引:1
作者
Lomp, Christian [1 ,2 ]
Puczylowski, Edmund [3 ]
机构
[1] Univ Porto, Fac Sci, Dept Math, P-4169007 Oporto, Portugal
[2] Univ Porto, Ctr Math, P-4169007 Oporto, Portugal
[3] Univ Warsaw, Inst Math, Warsaw, Poland
关键词
Dimension formula; Infinite Goldie dimension; 16P60; 16P20; 15D15; 16D20; SUM;
D O I
10.1080/00927872.2014.890725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [2] Camillo and Zelmanowitz stated that rings all whose modules are dimension modules are semisimple Artinian. It seem however that the proof in [2] contains a gap and applies to rings with finite Goldie dimension only. In this paper we show that the result indeed holds for all rings with a basis as well as for all commutative rings with Goldie dimension attained.
引用
收藏
页码:2267 / 2271
页数:5
相关论文
共 7 条
[1]  
CAMILLO V, 1978, COMMUN ALGEBRA, V6, P345, DOI 10.1080/00927877808822249
[2]   DIMENSION MODULES [J].
CAMILLO, VP ;
ZELMANOWITZ, JM .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 91 (02) :249-261
[3]   INFINITE GOLDIE DIMENSIONS [J].
DAUNS, J ;
FUCHS, L .
JOURNAL OF ALGEBRA, 1988, 115 (02) :297-302
[4]  
DELVALLE A, 1994, COMMUN ALGEBRA, V22, P1257
[5]   DIMENSION MODULES AND MODULAR LATTICES [J].
Domagalska, P. ;
Puczylowski, E. R. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (05)
[6]  
SIERPINSKI W, 1928, MONATSHEFTE MATH PHY, V35, P239
[7]  
Wiliams Neil H., 1977, COMBINATORIAL SET TH