BINANA: A novel algorithm for ligand-binding characterization

被引:179
作者
Durrant, Jacob D. [1 ]
McCammon, J. Andrew [2 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, NSF Ctr Theoret Biol Phys, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
关键词
BINANA; Computer algorithm; Ligand-binding analysis; Computer-aided drug design; Structural biology; Virtual screening; RNA-EDITING LIGASE; TRYPANOSOMA-BRUCEI; PDBBIND DATABASE; PROTEIN; ELECTROSTATICS; RECOGNITION; INHIBITORS; COMPLEXES; PDB2PQR;
D O I
10.1016/j.jmgm.2011.01.004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational chemists and structural biologists are often interested in characterizing ligand-receptor complexes for hydrogen-bond, hydrophobic, salt-bridge, van der Waals, and other interactions in order to assess ligand binding. When done by hand, this characterization can become tedious, especially when many complexes need be analyzed. In order to facilitate the characterization of ligand binding, we here present a novel Python-implemented computer algorithm called BINANA (BINding ANAlyzer), which is freely available for download at http://www.nbcr.net/binana/. To demonstrate the utility of the new algorithm, we use BINANA to confirm that the number of hydrophobic contacts between a ligand and its protein receptor is positively correlated with ligand potency. Additionally, we show how BINANA can be used to search through a large ligand-receptor database to identify those complexes that are remarkable for selected binding features, and to identify lead candidates from a virtual screen with specific, desirable binding characteristics. We are hopeful that BINANA will be useful to computational chemists and structural biologists who wish to automatically characterize many ligand-receptor complexes for key binding characteristics. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:888 / 893
页数:6
相关论文
共 28 条
[1]   Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei [J].
Amaro, Rommie E. ;
Schnaufer, Achim ;
Interthal, Heidrun ;
Hol, Wim ;
Stuart, Kenneth D. ;
McCammon, J. Andrew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (45) :17278-17283
[2]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]  
Davis AM, 1999, ANGEW CHEM INT EDIT, V38, P737, DOI 10.1002/(SICI)1521-3773(19990315)38:6<736::AID-ANIE736>3.0.CO
[5]  
2-R
[6]   High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei:: RNA editing ligase 1 [J].
Deng, JP ;
Schnaufer, A ;
Salavati, R ;
Stuart, KD ;
Hol, WGJ .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 343 (03) :601-613
[7]   PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations [J].
Dolinsky, TJ ;
Nielsen, JE ;
McCammon, JA ;
Baker, NA .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W665-W667
[8]   PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations [J].
Dolinsky, Todd J. ;
Czodrowski, Paul ;
Li, Hui ;
Nielsen, Jens E. ;
Jensen, Jan H. ;
Klebe, Gerhard ;
Baker, Nathan A. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W522-W525
[9]   Cation-pi interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp [J].
Dougherty, DA .
SCIENCE, 1996, 271 (5246) :163-168
[10]   NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes [J].
Durrant, Jacob D. ;
McCammon, J. Andrew .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (10) :1865-1871