Spallation Characteristics of Single Crystal Aluminum with Copper Nanoparticles Based on Atomistic Simulations

被引:8
作者
Jiang, Dong-Dong [1 ,2 ]
Chen, Peng-Yu [1 ]
Wang, Pei [1 ]
He, An-Min [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
关键词
nanocomposite; aluminum; inclusion; spall; shock response; microstructure; molecular dynamics; MOLECULAR-DYNAMICS; FRACTURE; AL; MICROSTRUCTURE; DAMAGE; DEFORMATION; STRENGTH; SIZE; INCLUSIONS; EVOLUTION;
D O I
10.3390/nano11102603
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, the effects of Cu nanoparticle inclusion on the dynamic responses of single crystal Al during shockwave loading and subsequent spallation processes have been explored by molecular dynamics simulations. At specific impact velocities, the ideal single crystal Al will not produce dislocation and stacking fault structure during shock compression, while Cu inclusion in an Al-Cu nanocomposite will lead to the formation of a regular stacking fault structure. The significant difference of a shock-induced microstructure makes the spall strength of the Al-Cu nanocomposite lower than that of ideal single crystal Al at these specific impact velocities. The analysis of the damage evolution process shows that when piston velocity u(p) <= 2.0 km/s, due to the dense defects and high potential energy at the interface between inclusions and matrix, voids will nucleate preferentially at the inclusion interface, and then grow along the interface at a rate of five times faster than other voids in the Al matrix. When u(p) >= 2.5 km/s, the Al matrix will shock melt or unloading melt, and micro-spallation occurs; Cu inclusions have no effect on spallation strength, but when Cu inclusions and the Al matrix are not fully diffused, the voids tend to grow and coalescence along the inclusion interface to form a large void.
引用
收藏
页数:16
相关论文
共 63 条
[1]   Interatomic potential for the Al-Cu system [J].
Apostol, F. ;
Mishin, Y. .
PHYSICAL REVIEW B, 2011, 83 (05)
[2]   Observation of Tungsten Particle Deformation Inside a Shock Compressed Polymer [J].
Bober, David ;
Rhee, Moono ;
Barton, Nathan ;
Kumar, Mukul .
SHOCK COMPRESSION OF CONDENSED MATTER - 2019, 2020, 2272
[3]   BAIN STRAIN, LATTICE CORRESPONDENCES, AND DEFORMATIONS RELATED TO MARTENSITIC TRANSFORMATIONS [J].
BOWLES, JS ;
WAYMAN, CM .
METALLURGICAL TRANSACTIONS, 1972, 3 (05) :1113-&
[4]   Evolution of Shock-Induced Orientation-Dependent Metastable States in Crystalline Aluminum [J].
Budzevich, Mikalai M. ;
Zhakhovsky, Vasily V. ;
White, Carter T. ;
Oleynik, Ivan I. .
PHYSICAL REVIEW LETTERS, 2012, 109 (12)
[5]   Use of multiframe proton radiography to investigate fast hydrodynamic processes [J].
Burtsev, V. V. ;
Lebedev, A. I. ;
Mikhailov, A. L. ;
Ogorodnikov, V. A. ;
Oreshkov, O. V. ;
Panov, K. N. ;
Rudnev, A. V. ;
Svirskii, O. V. ;
Syrunin, M. A. ;
Trutnev, Yu. A. ;
Khramov, I. V. .
COMBUSTION EXPLOSION AND SHOCK WAVES, 2011, 47 (06) :627-638
[6]   Spall behavior of aluminum with varying microstructures [J].
Chen, X ;
Asay, JR ;
Dwivedi, SK ;
Field, DP .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (02)
[7]   Effects of second-phase boron particles on impact response of aluminum [J].
Cheng, J. C. ;
Li, H. Y. ;
Li, C. ;
Xiao, X. H. ;
Zhong, Z. Y. ;
Lu, L. ;
Luo, S. N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 793
[8]   DYNAMIC FAILURE OF SOLIDS [J].
CURRAN, DR ;
SEAMAN, L ;
SHOCKEY, DA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 147 (5-6) :253-388
[9]   Microstructure dependence of dynamic fracture and yielding in aluminum and an aluminum alloy at strain rates of 2 x 106 s-1 and faster [J].
Dalton, D. A. ;
Worthington, D. L. ;
Sherek, P. A. ;
Pedrazas, N. A. ;
Quevedo, H. J. ;
Bernstein, A. C. ;
Rambo, P. ;
Schwarz, J. ;
Edens, A. ;
Geissel, M. ;
Smith, I. C. ;
Taleff, E. M. ;
Ditmire, T. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (10)
[10]  
Davison L, 2008, SHOCK WAVE HIGH PRES, P317