Cumulant analysis in wavelet space for studying effects of aging on electrical activity of the brain

被引:7
作者
Guyo, G. A. [1 ,2 ]
Pavlov, A. N. [1 ,2 ]
Pitsik, E. N. [3 ,4 ]
Frolov, N. S. [3 ,4 ]
Badarin, A. A. [3 ,4 ]
Grubov, V. V. [3 ,4 ]
Pavlova, O. N. [1 ]
Hramov, A. E. [3 ,4 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Astrakhanskaya Str 83, Saratov 410012, Russia
[2] Reg Sci & Educ Math Ctr Math Future Technol, Saratov 410012, Russia
[3] Innopolis Univ, Univ Skaya Str 1, Innopolis 420500, Russia
[4] Immanuel Kant Baltic Fed Univ, Kaliningrad 236041, Russia
基金
俄罗斯基础研究基金会; 中国国家自然科学基金; 俄罗斯科学基金会;
关键词
Wavelet; Signal processing; Cumulant analysis; EEG; Aging effects; ALZHEIMERS-DISEASE; FUNCTIONAL CONNECTIVITY; COMPENSATORY MECHANISMS; BEHAVIORAL VARIANT; DECOMPOSITION; PERFORMANCE; NETWORKS; WHITE;
D O I
10.1016/j.chaos.2022.112038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multiresolution wavelet analysis with thorough processing of decomposition coefficients using a set of cumulants is proposed as a way to improve the characterization of complex dynamics based on experimental data. The application of this approach for quantification the effects of aging in the responses of the electrical activity of the brain to fine motor tasks (clenching the fist) is considered. It is shown that young and elderly adults have significant differences in reactions to this type of movements carried out by the dominant and nondominant hand. The characterization of inter-group distinctions using the skewness and kurtosis of the probability distribution of the wavelet decomposition coefficients outperforms the diagnostics of age-related differences based on standard deviation of this distribution. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 37 条
[1]  
Addison P S, 2017, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, DOI DOI 10.1201/9781315372556
[2]   Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction [J].
Alickovic, Emina ;
Kevric, Jasmin ;
Subasi, Abdulhamit .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 39 :94-102
[3]  
[Anonymous], 1994, Adapted Wavelet Analysis: From Theory to Software
[4]  
[Anonymous], 1993, Wavelets: Algorithms and Applications
[5]   Pattern recognition in high multiplicity events [J].
Astafyeva, NM ;
Dremin, IM ;
Kotelnikov, KA .
MODERN PHYSICS LETTERS A, 1997, 12 (16) :1185-1191
[6]   Prefrontal hyperactivity in older people during motor planning [J].
Berchicci, Marika ;
Lucci, Giuliana ;
Pesce, Caterina ;
Spinelli, Donatella ;
Di Russo, Francesco .
NEUROIMAGE, 2012, 62 (03) :1750-1760
[7]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]   Precursors of stall and surge processes in gas turbines revealed by wavelet analysis [J].
Dremin, IM ;
Furletov, VI ;
Ivanov, OV ;
Nechitailo, VA ;
Terziev, VG .
CONTROL ENGINEERING PRACTICE, 2002, 10 (06) :599-604
[10]   Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task [J].
Fernandez-Ruiz, Juan ;
Peltsch, Alicia ;
Alahyane, Nadia ;
Brien, Donald C. ;
Coe, Brian C. ;
Garcia, Angeles ;
Munoz, Douglas P. .
NEUROIMAGE, 2018, 165 :92-101