Electrochemical CO2 Reduction Reaction on M@Cu(211) Bimetallic Single-Atom Surface Alloys: Mechanism, Kinetics, and Catalyst Screening

被引:118
作者
Feng, Yonghao [1 ]
An, Wei [1 ]
Wang, Zeming [1 ]
Wang, Yuanqiang [1 ]
Men, Yong [1 ]
Du, Yuanyuan [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2 electrochemical reduction; Cu(211); bimetallic single-atom surface alloy; density functional theory; microkinetic modeling; CARBON-DIOXIDE REDUCTION; FINDING SADDLE-POINTS; COPPER ELECTRODE; FORMIC-ACID; OXYGEN REDUCTION; ELECTROREDUCTION; SELECTIVITY; ELECTROCATALYSTS; TRENDS; CU;
D O I
10.1021/acssuschemeng.9b05183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Copper is a well-known metal for catalyzing electrochemical CO2 reduction reaction (CO2 RR) toward valuable hydrocarbons and alcohols. Here, using combined density-functional theory and microkinetic modeling approach, we systematically investigated eleven bimetallic [email protected](211) single-atom stepped surface alloys for their CO2 RR activity. It is revealed that the stepped M edge is most likely to be active sites for CO2 RR. The primary reaction pathway is identified as *COOH -> *CO -> *CHO with the potential determining step of *CO + H+ + e- -> *CHO, leading to either CH4 or CH3OH formation at more negative potential. Especially, [email protected](211) and [email protected](211) are both predicted to be most efficient in promoting CO2 RR toward CH4 owing to their breaking of the coupled scaling relations of key intermediates binding at active site. Furthermore, the binding strength of *CO and *OH can serve as good descriptor for differentiating various [email protected](211) for CO2 RR activity and selectivity and specifically, the moderate oxophilic and carbophilic elements of M are preferred. Our study highlights the utmost importance of breaking the linear scaling relations of key intermediates binding at active site for boosting CO2 RR performance.
引用
收藏
页码:210 / 222
页数:25
相关论文
共 90 条
[1]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[2]   Selective Heterogeneous CO2 Electroreduction to Methanol [J].
Back, Seoin ;
Kim, Heejin ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (02) :965-971
[3]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[4]   CO2 electroreduction on copper- cobalt nanoparticles: Size and composition effect [J].
Bernal, M. ;
Bagger, A. ;
Scholten, F. ;
Sinev, I. ;
Bergmann, A. ;
Ahmadi, M. ;
Rossmeisl, J. ;
Roldan Cuenya, Beatriz .
NANO ENERGY, 2018, 53 :27-36
[5]   Reducing the onset potential of CO2 electroreduction on CuRu bimetallic particles [J].
Billy, Joshua T. ;
Co, Anne C. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 237 :911-918
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Electrochemical Barriers Made Simple [J].
Chan, Karen ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14) :2663-2668
[8]   Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction [J].
Chan, Karen ;
Tsai, Charlie ;
Hansen, Heine A. ;
Norskov, Jens K. .
CHEMCATCHEM, 2014, 6 (07) :1899-1905
[9]   Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons [J].
Cheng, Mu-Jeng ;
Clark, Ezra L. ;
Pham, Hieu H. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2016, 6 (11) :7769-7777
[10]   Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity [J].
Clark, Ezra L. ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (44) :15848-15857