On the number of designs with affine parameters

被引:1
作者
Donovan, D. M. [2 ]
Grannell, M. J. [1 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
[2] Univ Queensland, Ctr Discrete Math & Comp, St Lucia, Qld 4072, Australia
关键词
2-Design; Affine geometry; Flats; Enumeration; BOUNDS;
D O I
10.1007/s10623-011-9528-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A construction is described that yields improved lower bounds for the numbers of 2-designs and resolvable 2-designs with the parameters of AG (d) (n, q).
引用
收藏
页码:15 / 27
页数:13
相关论文
共 9 条
[1]   Exponential Bounds on the Number of Designs with Affine Parameters [J].
Clark, David ;
Jungnickel, Dieter ;
Tonchev, Vladimir D. .
JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (06) :475-487
[2]  
Colbourn CJ., 2007, CRC HDB COMBINATORIA
[3]   Designs having the parameters of projective and affine spaces [J].
Donovan, D. M. ;
Grannell, M. J. .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (03) :225-240
[4]  
JUNGNICKEL D, 1984, GEOM DEDICATA, V16, P167
[5]   The number of designs with geometric parameters grows exponentially [J].
Jungnickel, Dieter ;
Tonchev, Vladimir D. .
DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) :131-140
[6]   AUTOMORPHISMS AND ISOMORPHISMS OF SYMMETRICAL AND AFFINE DESIGNS [J].
KANTOR, WM .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (03) :307-338
[7]   SOME NON-ISOMORPHIC (4T + 4, 8T + 6, 4T + 3, 2T + 2, 2T + 1)-BIBDS [J].
KOCAY, W ;
VANREES, GHJ .
DISCRETE MATHEMATICS, 1991, 92 (1-3) :159-172
[8]   Bounds on the number of affine, symmetric, and Hadamard designs and matrices [J].
Lam, C ;
Lam, S ;
Tonchev, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 92 (02) :186-196
[9]   A new bound on the number of designs with classical affine parameters [J].
Lam, C ;
Tonchev, VD .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 27 (1-2) :111-117