The 3′ Splice Site of Influenza A Segment 7 mRNA Can Exist in Two Conformations: A Pseudoknot and a Hairpin

被引:34
作者
Moss, Walter N. [1 ]
Dela-Moss, Lumbini I. [1 ]
Kierzek, Elzbieta [2 ]
Kierzek, Ryszard [2 ]
Priore, Salvatore F. [1 ]
Turner, Douglas H. [1 ]
机构
[1] Univ Rochester, Ctr RNA Biol, Dept Chem, Rochester, NY 14627 USA
[2] Polish Acad Sci, Inst Bioorgan Chem, Poznan, Noskowskiego, Poland
基金
美国国家卫生研究院;
关键词
PHYLOGENETIC-COMPARATIVE-ANALYSIS; SELECTIVE 2'-HYDROXYL ACYLATION; NEAREST-NEIGHBOR MODEL; METAL-ION BINDING; SECONDARY STRUCTURE; INTERNAL LOOP; BASE-PAIRS; THERMODYNAMIC PROPERTIES; COUNTERION CONDENSATION; TETRAHYMENA RIBOZYME;
D O I
10.1371/journal.pone.0038323
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The 3' splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3' splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
引用
收藏
页数:11
相关论文
共 99 条
[1]   Comprehensive survey and geometric classification of base triples in RNA structures [J].
Abu Almakarem, Amal S. ;
Petrov, Anton I. ;
Stombaugh, Jesse ;
Zirbel, Craig L. ;
Leontis, Neocles B. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (04) :1407-1423
[2]   Biochemical Characterization of Enzyme Fidelity of Influenza A Virus RNA Polymerase Complex [J].
Aggarwal, Shilpa ;
Bradel-Tretheway, Birgit ;
Takimoto, Toru ;
Dewhurst, Stephen ;
Kim, Baek .
PLOS ONE, 2010, 5 (04)
[3]  
[Anonymous], 2001, CURRENT PROTOCOLS NU, DOI DOI 10.1002/0471142700.NC1106S06
[4]  
[Anonymous], 2009, INFL SEAS FACT SHEET
[5]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[6]   The influenza virus resource at the national center for biotechnology information [J].
Bao, Yiming ;
Bolotov, Pavel ;
Dernovoy, Dmitry ;
Kiryutin, Boris ;
Zaslavsky, Leonid ;
Tatusova, Tatiana ;
Ostell, Jim ;
Lipman, David .
JOURNAL OF VIROLOGY, 2008, 82 (02) :596-601
[7]   siRNA for Influenza Therapy [J].
Barik, Sailen .
VIRUSES-BASEL, 2010, 2 (07) :1448-1457
[8]   CRYSTALLOGRAPHIC AND BIOCHEMICAL INVESTIGATION OF THE LEAD(II)-CATALYZED HYDROLYSIS OF YEAST PHENYLALANINE TRANSFER-RNA [J].
BROWN, RS ;
DEWAN, JC ;
KLUG, A .
BIOCHEMISTRY, 1985, 24 (18) :4785-4801
[9]   RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA dxon [J].
Buratti, E ;
Muro, AF ;
Giombi, M ;
Gherbassi, D ;
Iaconcig, A ;
Baralle, FE .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (03) :1387-1400
[10]   Predicting RNA pseudoknot folding thermodynamics [J].
Cao, Song ;
Chen, Shi-Jie .
NUCLEIC ACIDS RESEARCH, 2006, 34 (09) :2634-2652