Pathway-directed weighted testing procedures for the integrative analysis of gene expression and metabolomic data

被引:10
|
作者
Poisson, Laila M. [1 ]
Sreekumar, Arun [2 ]
Chinnaiyan, Arul M. [3 ]
Ghosh, Debashis [4 ,5 ]
机构
[1] Henry Ford Hosp, Dept Publ Hlth Sci, Detroit, MI 48202 USA
[2] Baylor Coll Med, Alkek Ctr Mol Discovery, Houston, TX 77030 USA
[3] Univ Michigan, Michigan Ctr Translat Pathol, Ann Arbor, MI 48109 USA
[4] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Publ Hlth Sci, University Pk, PA USA
关键词
Cancer; Metabolomic data; Multiple testing; Pathway information; Transcriptomic data; GENOMICS; CANCER; VISUALIZATION; PROTEOMICS; PROFILES; TOOL;
D O I
10.1016/j.ygeno.2012.03.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We explore the utility of p-value weighting for enhancing the power to detect differential metabolites in a two-sample setting. Related gene expression information is used to assign an a priori importance level to each metabolite being tested. We map the gene expression to a metabolite through pathways and then gene expression information is summarized per-pathway using gene set enrichment tests. Through simulation we explore four styles of enrichment tests and four weight functions to convert the gene information into a meaningful p-value weight. We implement the p-value weighting on a prostate cancer metabolomic dataset. Gene expression on matched samples is used to construct the weights. Under certain regulatory conditions, the use of weighted p-values does not inflate the type 1 error above what we see for the un-weighted tests except in high correlation situations. The power to detect differential metabolites is notably increased in situations with disjoint pathways and shows moderate improvement, relative to the proportion of enriched pathways, when pathway membership overlaps. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [21] Weighted set enrichment of gene expression data
    Qureshi, Rehman
    Sacan, Ahmet
    BMC SYSTEMS BIOLOGY, 2013, 7
  • [22] MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data
    Kaever, Alexander
    Landesfeind, Manuel
    Feussner, Kirstin
    Mosblech, Alina
    Heilmann, Ingo
    Morgenstern, Burkhard
    Feussner, Ivo
    Meinicke, Peter
    METABOLOMICS, 2015, 11 (03) : 764 - 777
  • [23] Biologically weighted LASSO: enhancing functional interpretability in gene expression data analysis
    Mongardi, Sofia
    Cascianelli, Silvia
    Masseroli, Marco
    BIOINFORMATICS, 2024, 40 (10)
  • [24] A route-based pathway analysis framework integrating mutation information and gene expression data
    Zhao, Yue
    Hoang, Tham H.
    Joshi, Pujan
    Hong, Seung-Hyun
    Giardina, Charles
    Shin, Dong-Guk
    METHODS, 2017, 124 : 3 - 12
  • [25] HisCoM-PAGE: Hierarchical Structural Component Models for Pathway Analysis of Gene Expression Data
    Mok, Lydia
    Kim, Yongkang
    Lee, Sungyoung
    Choi, Sungkyoung
    Lee, Seungyeoun
    Jang, Jin-Young
    Park, Taesung
    GENES, 2019, 10 (11)
  • [26] Integrative Analysis of Metabolomic and Transcriptomic Data Reveals Metabolic Signatures and Major Metabolic Pathways in Primary Aldosteronism
    Lai, Xiaomei
    Yang, Tingting
    Wei, Chaoping
    Zhu, Shuangbei
    Li, Jianling
    ENDOCRINE METABOLIC & IMMUNE DISORDERS-DRUG TARGETS, 2025,
  • [27] Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data
    Kuijjer, Marieke L.
    Rydbeck, Halfdan
    Kresse, Stine H.
    Buddingh, Emilie P.
    Lid, Ana B.
    Roelofs, Helene
    Buerger, Horst
    Myklebost, Ola
    Hogendoorn, Pancras C. W.
    Meza-Zepeda, Leonardo A.
    Cleton-Jansen, Anne-Marie
    GENES CHROMOSOMES & CANCER, 2012, 51 (07) : 696 - 706
  • [28] Multi-view based integrative analysis of gene expression data for identifying biomarkers
    Yang, Zi-Yi
    Liu, Xiao-Ying
    Shu, Jun
    Zhang, Hui
    Ren, Yan-Qiong
    Xu, Zong-Ben
    Liang, Yong
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [29] Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data
    Pounds, Stanley B.
    Gao, Cuilan L.
    Zhang, Hui
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2012, 11 (05)
  • [30] Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis
    Nam, Hye-Young
    Chandrashekar, Darshan S.
    Kundu, Anirban
    Shelar, Sandeep
    Kho, Eun-Young
    Sonpavde, Guru
    Naik, Gurudatta
    Ghatalia, Pooja
    Livi, Carolina B.
    Varambally, Sooryanarayana
    Sudarshan, Sunil
    MOLECULAR CANCER RESEARCH, 2019, 17 (01) : 84 - 96