Development and Validation of a Comprehensive Multivariate Dosimetric Model for Predicting Late Genitourinary Toxicity Following Prostate Cancer Stereotactic Body Radiotherapy

被引:3
作者
Valle, Luca F. [1 ]
Ruan, Dan [1 ]
Dang, Audrey [1 ]
Levin-Epstein, Rebecca G. [1 ]
Patel, Ankur P. [2 ]
Weidhaas, Joanne B. [1 ]
Nickols, Nicholas G. [1 ]
Lee, Percy P. [1 ]
Low, Daniel A. [1 ]
Qi, X. Sharon [1 ]
King, Christopher R. [1 ]
Steinberg, Michael L. [1 ]
Kupelian, Patrick A. [1 ]
Cao, Minsong [1 ]
Kishan, Amar U. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Radiat Oncol, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA
关键词
dose volume histogram (DVH); prostate cancer; multivariate; prediction model; late toxicity; stereotactic body radiation therapy; machine learning; RADIATION-THERAPY;
D O I
10.3389/fonc.2020.00786
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Dosimetric predictors of toxicity after Stereotactic Body Radiation Therapy (SBRT) are not well-established. We sought to develop a multivariate model that predicts Common Terminology Criteria for Adverse Events (CTCAE) late grade 2 or greater genitourinary (GU) toxicity by interrogating the entire dose-volume histogram (DVH) from a large cohort of prostate cancer patients treated with SBRT on prospective trials. Methods: Three hundred and thirty-nine patients with late CTCAE toxicity data treated with prostate SBRT were identified and analyzed. All patients received 40 Gy in five fractions, every other day, using volumetric modulated arc therapy. For each patient, we examined 910 candidate dosimetric features including maximum dose, volumes of each organ [CTV, organs at risk (OARs)], V100%, and other granular volumetric/dosimetric indices at varying volumetric/dosimetric values from the entire DVH as well as ADT use to model and predict toxicity from SBRT. Training and validation subsets were generated with 90 and 10% of the patients in our cohort, respectively. Predictive accuracy was assessed by calculating the area under the receiver operating curve (AROC). Univariate analysis with student t-test was first performed on each candidate DVH feature. We subsequently performed advanced machine-learning multivariate analyses including classification and regression tree (CART), random forest, boosted tree, and multilayer neural network. Results: Median follow-up time was 32.3 months (range 3-98.9 months). Late grade >= 2 GU toxicity occurred in 20.1% of patients in our series. No single dosimetric parameter had an AROC for predicting late grade >= 2 GU toxicity on univariate analysis that exceeded 0.599. Optimized CART modestly improved prediction accuracy, with an AROC of 0.601, whereas other machine learning approaches did not improve upon univariate analyses. Conclusions: CART-based machine learning multivariate analyses drawing from 910 dosimetric features and ADT use modestly improves upon clinical prediction of late GU toxicity alone, yielding an AROC of 0.601. Biologic predictors may enhance predictive models for identifying patients at risk for late toxicity after SBRT.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Stereotactic body radiation therapy: The report of AAPM Task Group 101 [J].
Benedict, Stanley H. ;
Yenice, Kamil M. ;
Followill, David ;
Galvin, James M. ;
Hinson, William ;
Kavanagh, Brian ;
Keall, Paul ;
Lovelock, Michael ;
Meeks, Sanford ;
Papiez, Lech ;
Purdie, Thomas ;
Sadagopan, Ramaswamy ;
Schell, Michael C. ;
Salter, Bill ;
Schlesinger, David J. ;
Shiu, Almon S. ;
Solberg, Timothy ;
Song, Danny Y. ;
Stieber, Volker ;
Timmerman, Robert ;
Tome, Wolfgang A. ;
Verellen, Dirk ;
Wang, Lu ;
Yin, Fang-Fang .
MEDICAL PHYSICS, 2010, 37 (08) :4078-4101
[2]   Predictors of Acute Toxicity after Stereotactic Body Radiation Therapy for Low and Intermediate-risk Prostate Cancer: Secondary Analysis of a Phase I Trial [J].
Hong, D. S. ;
Heinzerling, J. H. ;
Lotan, Y. ;
Cho, L. C. ;
Brindle, J. ;
Xie, X. ;
Pistenmaa, D. ;
Cooley, S. ;
Boike, T. ;
Timmerman, R. D. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02) :S210-S210
[3]   Stereotactic Body Radiation Therapy for Localized Prostate Cancer: A Systematic Review and Meta-Analysis of Over 6,000 Patients Treated On Prospective Studies [J].
Jackson, William C. ;
Silva, Jessica ;
Hartman, Holly E. ;
Dess, Robert T. ;
Kishan, Amar U. ;
Beeler, Whitney H. ;
Gharzai, Laila A. ;
Jaworski, Elizabeth M. ;
Mehra, Rohit ;
Hearn, Jason W. D. ;
Morgan, Todd M. ;
Salami, Simpa S. ;
Cooperberg, Matthew R. ;
Mahal, Brandon A. ;
Soni, Payal D. ;
Kaffenberger, Samuel ;
Nguyen, Paul L. ;
Desai, Neil ;
Feng, Felix Y. ;
Zumsteg, Zachary S. ;
Spratt, Daniel E. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 104 (04) :778-789
[4]   Stereotactic body radiation therapy (SBRT) for prostate cancer in men with large prostates (≥50 cm3) [J].
Janowski, Einsley ;
Chen, Leonard N. ;
Kim, Joy S. ;
Lei, Siyuan ;
Suy, Simeng ;
Collins, Brian ;
Lynch, John ;
Dritschilo, Anatoly ;
Collins, Sean .
RADIATION ONCOLOGY, 2014, 9 :241
[5]   Multi-Institutional Analysis of Prostate-Specific Antigen Kinetics After Stereotactic Body Radiation Therapy [J].
Jiang, Naomi Y. ;
Dang, Audrey T. ;
Yuan, Ye ;
Chu, Fang-I ;
Shabsovich, David ;
King, Christopher R. ;
Collins, Sean P. ;
Aghdam, Nima ;
Suy, Simeng ;
Mantz, Constantine A. ;
Miszczyk, Leszek ;
Napieralska, Aleksandra ;
Namysl-Kaletka, Agnieszka ;
Bagshaw, Hilary ;
Prionas, Nicolas ;
Buyyounouski, Mark K. ;
Jackson, William C. ;
Spratt, Daniel E. ;
Nickols, Nicholas G. ;
Steinberg, Michael L. ;
Kupelian, Patrick A. ;
Kishan, Amar U. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (03) :628-636
[6]   Stereotactic body radiotherapy for localized prostate cancer: Pooled analysis from a multi-institutional consortium of prospective phase II trials [J].
King, Christopher R. ;
Freeman, Debra ;
Kaplan, Irving ;
Fuller, Donald ;
Bolzicco, Giampaolo ;
Collins, Sean ;
Meier, Robert ;
Wang, Jason ;
Kupelian, Patrick ;
Steinberg, Michael ;
Katz, Alan .
RADIOTHERAPY AND ONCOLOGY, 2013, 109 (02) :217-221
[7]   Long-term Outcomes of Stereotactic Body Radiotherapy for Low-Risk and Intermediate-Risk Prostate Cancer [J].
Kishan, Amar U. ;
Dang, Audrey ;
Katz, Alan J. ;
Mantz, Constantine A. ;
Collins, Sean P. ;
Aghdam, Nima ;
Chu, Fang-I ;
Kaplan, Irving D. ;
Appelbaum, Limor ;
Fuller, Donald B. ;
Meier, Robert M. ;
Loblaw, D. Andrew ;
Cheung, Patrick ;
Pham, Huong T. ;
Shaverdian, Narek ;
Jiang, Naomi ;
Yuan, Ye ;
Bagshaw, Hilary ;
Prionas, Nicolas ;
Buyyounouski, Mark K. ;
Spratt, Daniel E. ;
Linson, Patrick W. ;
Hong, Robert L. ;
Nickols, Nicholas G. ;
Steinberg, Michael L. ;
Kupelian, Patrick A. ;
King, Christopher R. .
JAMA NETWORK OPEN, 2019, 2 (02)
[8]   Late urinary toxicity modeling after stereotactic body radiotherapy (SBRT) in the definitive treatment of localized prostate cancer [J].
Kole, Thomas P. ;
Tong, Michael ;
Wu, Binbin ;
Lei, Siyuan ;
Obayomi-Davies, Olusola ;
Chen, Leonard N. ;
Suy, Simeng ;
Dritschilo, Anatoly ;
Yorke, Ellen ;
Collins, Sean P. .
ACTA ONCOLOGICA, 2016, 55 (01) :52-58
[9]   Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy [J].
Lee, Sangkyu ;
Kerns, Sarah ;
Ostrer, Harry ;
Rosenstein, Barry ;
Deasy, Joseph O. ;
Oh, Jung Hun .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (01) :128-135
[10]   A radiation-induced gene expression signature as a tool to predict acute radiotherapy-induced adverse side effects [J].
Mayer, Claudia ;
Popanda, Odilia ;
Greve, Burkhard ;
Fritz, Eberhard ;
Illig, Thomas ;
Eckardt-Schupp, Friederike ;
Gomolka, Maria ;
Benner, Axel ;
Schmezer, Peter .
CANCER LETTERS, 2011, 302 (01) :20-28