Synergistic Coupling of Li6.4La3Zr1.4Ta0.6O12 and Fluoroethylene Carbonate Boosts Electrochemical Performances of Poly(Ethylene Oxide)-Based All-Solid-State Lithium Batteries

被引:5
作者
Zhang, Lu [1 ]
Wang, Zhitao [1 ]
Zhou, Hu [2 ]
Li, Xiaogang [1 ]
Liu, Qian [1 ]
Wang, Ping [3 ]
Yuan, Aihua [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Mat Sci & Technol, Zhenjiang 212003, Jiangsu, Peoples R China
[3] Zhenjiang Coll, Inst Med & Chem Engn, Zhenjiang 212028, Jiangsu, Peoples R China
来源
CHEMELECTROCHEM | 2022年 / 9卷 / 17期
基金
中国国家自然科学基金;
关键词
fluoroethylene carbonate; in-situ formation; interface; LLZTO; PEO-based composite polymer electrolytes; ION-CONDUCTING MEMBRANE; COMPOSITE ELECTROLYTES; POLYMER ELECTROLYTE; NANOPARTICLES; CHALLENGES; SOLVATION; CAPACITY;
D O I
10.1002/celc.202200641
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
All-solid-state lithium batteries (ASSLBs) with poly(ethylene oxide) (PEO)-based composites solid-state electrolytes have received much attention owing to their higher energy density and better safety compared with conventional liquid electrolytes. However, ASSLBs with PEO-based solid-state electrolytes generally suffer from severe capacity degradation and interface transfer obstacles during the charge/discharge process. In this work, fluoroethylene carbonate (FEC) is employed as a reducing additive to in-situ form LiF-rich and stable solid-state electrolyte interface (SEI). Benefiting from the integrated advantages of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and FEC binary additives, the number of lithium-ion transference increases to 0.48, which facilitates the stable cycling of Li||Li symmetrical batteries over 900 h at 0.1 mA cm(-2). The synergistic interplay of LLZTO and FEC constructs a stable LiF-rich SEI film, effectively addressing the interfacial problems caused by lithium dendrites and promoting the transport of Li ions. Therefore, the high ionic conductivity and self-healing anode-electrolyte interface are achieved. This study provides a facile and economical strategy to solve the problem of the lithium-electrolyte interface. It is of great scientific significance for the development of dendrite-free solid-state lithium metal batteries.
引用
收藏
页数:8
相关论文
共 53 条
  • [1] The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes
    Bordes, Arnaud
    Eom, KwangSup
    Fuller, Thomas F.
    [J]. JOURNAL OF POWER SOURCES, 2014, 257 : 163 - 169
  • [2] In Situ Polymerized Polydopamine Nanoparticles as Enhanced Polymer Composite Electrolyte for All-Solid-State Lithium-Ion Batteries
    Chen, Biyun
    Huang, Hong
    Wang, Yuan
    Shen, Zhangfeng
    Li, Lifen
    Wang, Yan
    Wang, Xiaoqiang
    Li, Xi
    Wang, Yangang
    [J]. CHEMELECTROCHEM, 2022, 9 (03)
  • [3] Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries
    Chen, Fei
    Yang, Dunjie
    Zha, Wenping
    Zhu, Bodi
    Zhang, Yanhua
    Li, Junyang
    Gu, Yuping
    Shen, Qiang
    Zhang, Lianmeng
    Sadoway, Donald R.
    [J]. ELECTROCHIMICA ACTA, 2017, 258 : 1106 - 1114
  • [4] Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries
    Chen, Long
    Li, Wenxin
    Fan, Li-Zhen
    Nan, Ce-Wen
    Zhang, Qiang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
  • [5] PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"
    Chen, Long
    Li, Yutao
    Li, Shuai-Peng
    Fan, Li-Zhen
    Nan, Ce-Wen
    Goodenough, John B.
    [J]. NANO ENERGY, 2018, 46 : 176 - 184
  • [6] Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces
    Chen, Rusong
    Li, Qinghao
    Yu, Xiqian
    Chen, Liquan
    Li, Hong
    [J]. CHEMICAL REVIEWS, 2020, 120 (14) : 6820 - 6877
  • [7] How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes?
    Cheng, Shan
    Smith, Derrick M.
    Li, Christopher Y.
    [J]. MACROMOLECULES, 2014, 47 (12) : 3978 - 3986
  • [8] A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase
    Cui, Chunyu
    Yang, Chongyin
    Eidson, Nico
    Chen, Ji
    Han, Fudong
    Chen, Long
    Luo, Chao
    Wang, Peng-Fei
    Fan, Xiulin
    Wang, Chunsheng
    [J]. ADVANCED MATERIALS, 2020, 32 (12)
  • [9] Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
    Fan, Xiulin
    Ji, Xiao
    Han, Fudong
    Yue, Jie
    Chen, Ji
    Chen, Long
    Deng, Tao
    Jiang, Jianjun
    Wang, Chunsheng
    [J]. SCIENCE ADVANCES, 2018, 4 (12):
  • [10] Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface
    Fu, Kun
    Gong, Yunhui
    Liu, Boyang
    Zhu, Yizhou
    Xu, Shaomao
    Yao, Yonggang
    Luo, Wei
    Wang, Chengwei
    Lacey, Steven D.
    Dai, Jiaqi
    Chen, Yanan
    Mo, Yifei
    Wachsman, Eric
    Hu, Liangbing
    [J]. SCIENCE ADVANCES, 2017, 3 (04):