YolactEdge: Real-time Instance Segmentation on the Edge

被引:37
|
作者
Liu, Haotian [2 ]
Soto, Rafael A. Rivera [2 ]
Xiao, Fanyi [1 ]
Lee, Yong Jae [2 ]
机构
[1] Amazon Web Serv Inc, Seattle, WA USA
[2] Univ Calif Davis, Davis, CA 95616 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
关键词
D O I
10.1109/ICRA48506.2021.9561858
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7 FPS on an RTX 2080 Ti) with a ResNet-101 backbone on 550x550 resolution images. To achieve this, we make two improvements to the state-of-the-art image-based real-time method YOLACT [1]: (1) applying TensorRT optimization while carefully trading off speed and accuracy, and (2) a novel feature warping module to exploit temporal redundancy in videos. Experiments on the YouTube VIS and MS COCO datasets demonstrate that YolactEdge produces a 3-5x speed up over existing real-time methods while producing competitive mask and box detection accuracy. We also conduct ablation studies to dissect our design choices and modules. Code and models are available at https://github.com/haotian-liu/yolact_edge.
引用
收藏
页码:9579 / 9585
页数:7
相关论文
共 50 条
  • [1] Edge Assisted Real-time Instance Segmentation on Mobile Devices
    Zhang, Jialin
    Huang, Xiang
    Xu, Jingao
    Wu, Yue
    Ma, Qiang
    Miao, Xin
    Zhang, Li
    Chen, Pengpeng
    Yang, Zheng
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 537 - 547
  • [2] YOLACT Real-time Instance Segmentation
    Bolya, Daniel
    Zhou, Chong
    Xiao, Fanyi
    Lee, Yong Jae
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9156 - 9165
  • [3] Sparse Instance Activation for Real-Time Instance Segmentation
    Cheng, Tianheng
    Wang, Xinggang
    Chen, Shaoyu
    Zhang, Wenqiang
    Zhang, Qian
    Huang, Chang
    Zhang, Zhaoxiang
    Liu, Wenyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4423 - 4432
  • [4] Real-Time Instance-Aware Segmentation and Semantic Mapping on Edge Devices
    Lu, Junjie
    Tian, Bailing
    Shen, Hongming
    Zhang, Xuewei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Real-Time Instance-Aware Segmentation and Semantic Mapping on Edge Devices
    Lu, Junjie
    Tian, Bailing
    Shen, Hongming
    Zhang, Xuewei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Real-Time Instance-Aware Segmentation and Semantic Mapping on Edge Devices
    Lu, Junjie
    Tian, Bailing
    Shen, Hongming
    Zhang, Xuewei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] Towards Real-Time Segmentation on the Edge
    Li, Yanyu
    Yang, Changdi
    Zhao, Pu
    Yuan, Geng
    Niu, Wei
    Guan, Jiexiong
    Tang, Hao
    Qin, Minghai
    Jin, Qing
    Ren, Bin
    Lin, Xue
    Wang, Yanzhi
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1468 - 1476
  • [8] RISAT: real-time instance segmentation with adversarial training
    Songwen Pei
    Bo Ni
    Tianma Shen
    Zhenling Zhou
    Yewang Chen
    Meikang Qiu
    Multimedia Tools and Applications, 2023, 82 : 4063 - 4080
  • [9] RISAT: real-time instance segmentation with adversarial training
    Pei, Songwen
    Ni, Bo
    Shen, Tianma
    Zhou, Zhenling
    Chen, Yewang
    Qiu, Meikang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4063 - 4080
  • [10] Real-time instance segmentation with assembly parallel task
    Zhen Yang
    Yang Wang
    Fan Yang
    Zhijian Yin
    Tao Zhang
    The Visual Computer, 2023, 39 : 3937 - 3947