共 50 条
Effect of Modified Polyvinyl Alcohol Fibers on the Mechanical Behavior of Engineered Cementitious Composites
被引:23
|作者:
Sun, Mian
[1
,2
]
Chen, Youzhi
[1
,2
]
Zhu, Jiaoqun
[1
,2
]
Sun, Tao
[1
,2
]
Shui, Zhonghe
[1
,2
]
Ling, Gang
[1
,2
]
Zhong, Haoxuan
[1
,2
]
Zheng, Yourui
[1
,2
]
机构:
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
来源:
关键词:
engineered cementitious composites (ECC);
polyvinyl alcohol;
fiber modification;
mechanical behavior;
REINFORCED-CONCRETE;
FLEXURAL PERFORMANCE;
DEFORMATION-BEHAVIOR;
HARDENING BEHAVIOR;
STRENGTH;
MATRIX;
CORROSION;
DUCTILITY;
DESIGN;
BEAMS;
D O I:
10.3390/ma12010037
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Polyvinyl alcohol (PVA) fiber was proposed to enhance the mechanical performance of engineered cementitious composite in this research. A mixture of engineered cementitious composite with better expected performance was made by adding 2% PVA fiber. Mechanics tests, including pressure resistance, fracture resistance, and ultimate tensile strength, were conducted. They reveal that the engineered cementitious composites not only exhibit good pressure resistance, but they also exhibit excellent fracture resistance and strain capability against tensile stress through mechanics tests, including pressure resistance, fracture resistance, and ultimate tensile resistance. To further improve the engineered composites' ductility, attempts to modify the performance of the PVA fiber surface have been made by using a vinyl acetate (VAE) emulsion, a butadiene styrene emulsion, and boric anhydride. Results indicated that the VAE emulsion achieved the best performance improvement. Its use in fiber pre-processing enables the formation of a layer of film with weak acidity, which restrains the hydration of adjacent gel materials, and reduces the strength of transitional areas of the fiber/composite interface, which restricts fiber slippage and pulls out as a result of its growth in age, and reduces hydration levels. Research illustrates that the performance-improvement processing that is studied not only improves the strain of the engineered cementitious composites, but can also reduce the attenuation of the strain against tensile stress.
引用
收藏
页数:20
相关论文