Gaussian-Based Runtime Detection of Out-of-distribution Inputs for Neural Networks

被引:5
|
作者
Hashemi, Vahid [2 ]
Kretinsky, Jan [1 ]
Mohr, Stefanie [1 ]
Seferis, Emmanouil [1 ,2 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] AUDI AG, Ettingerstr 60, D-85057 Ingolstadt, Germany
来源
关键词
D O I
10.1007/978-3-030-88494-9_14
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this short paper, we introduce a simple approach for run-time monitoring of deep neural networks and show how to use it for out-of-distribution detection. The approach is based on inferring Gaussian models of some of the neurons and layers. Despite its simplicity, it performs better than recently introduced approaches based on interval abstractions which are traditionally used in verification.
引用
收藏
页码:254 / 264
页数:11
相关论文
共 50 条
  • [41] Robust Cough Detection With Out-of-Distribution Detection
    Chen, Yuhan
    Attri, Pankaj
    Barahona, Jeffrey
    Hernandez, Michelle L.
    Carpenter, Delesha
    Bozkurt, Alper
    Lobaton, Edgar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3210 - 3221
  • [42] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [43] On Risk Assessment for Out-of-Distribution Detection
    Vasiliuk, Anton
    IEEE ACCESS, 2025, 13 : 18546 - 18568
  • [44] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [45] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [46] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [47] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [48] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [49] Inductive Conformal Out-of-distribution Detection based on Adversarial Autoencoders
    Cai, Feiyang
    Ozdagli, Ali, I
    Potteiger, Nicholas
    Koutsoukos, Xenofon
    2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021), 2021, : 90 - 95
  • [50] Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection
    Zhou, Yibo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7369 - 7377