Computational Efficient Model for Human Ventricular Epicardial Cells

被引:0
|
作者
Biasi, Niccolo [1 ]
Tognetti, Alessandro [1 ,2 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, Pisa, Italy
[2] Univ Pisa, Ctr E Piaggio, Pisa, Italy
来源
2021 COMPUTING IN CARDIOLOGY (CINC) | 2021年
关键词
ALTERNANS; DYNAMICS; TISSUE;
D O I
10.22489/CinC.2021.086
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We developed a new phenomenological model for ventricular epicardial cells. The proposed model is based on the Rogers-McCulloch formulation of the FitzHughNagumo equations and consists of only three state variables. Furthermore, our model includes a simplification parameter r(gamma) which allows increasing time and space integration by a factor equal to r(gamma). Our three-variable model can reproduce the main tissue-level characteristics of epicardial cells, such as action potential amplitudes and shapes, upstroke velocities, and action potential duration and conduction velocity restitution curves. Except for a reduced upstroke velocity, the simplification included in the model does not significantly affect action potential characteristics and restitution properties. In a 2D sheet, integral characteristics of reentry dynamics, such as dominant period, are only slightly influenced by the simplification. However, the trajectory of the spiral tip changes for different values of r(gamma).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A computational model of the human left-ventricular epicardial myocyte
    Iyer, V
    Mazhari, R
    Winslow, RL
    BIOPHYSICAL JOURNAL, 2004, 87 (03) : 1507 - 1525
  • [2] A computationally efficient electrophysiological model of human ventricular cells
    Bernus, O
    Wilders, R
    Zemlin, CW
    Verschelde, H
    Panfilov, AV
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 282 (06): : H2296 - H2308
  • [3] A computationally efficient dynamic model of human epicardial tissue
    Biasi, Niccolo
    Tognetti, Alessandro
    PLOS ONE, 2021, 16 (10):
  • [4] Epicardial organization of human ventricular fibrillation
    Nanthakumar, K
    Walcott, GP
    Melnick, S
    Rogers, JM
    Kay, MW
    Smith, WM
    Ideker, RE
    Holman, W
    HEART RHYTHM, 2004, 1 (01) : 14 - 23
  • [5] The development of a new computational model for the electromechanics of the human ventricular myocyte
    de Oliveira, Bernardo Lino
    Sundnes, Joakim
    dos Santos, Rodrigo Weber
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 3820 - 3823
  • [6] The fate of epicardial wavefronts during human ventricular fibrillation
    Nanthakumar, K
    Holman, W
    Walcott, G
    Melnick, S
    Rogers, J
    Kay, M
    Smith, W
    Ideker, R
    CIRCULATION, 2002, 106 (19) : 667 - 667
  • [7] Mobility of epicardial rotors during human ventricular fibrillation
    Nash, Marlyn P.
    Mourad, Ayman
    Bradley, Chris P.
    Paterson, David J.
    Clayton, Richard H.
    Sutton, Peter M.
    Hayward, Martin
    Taggart, Peter
    CIRCULATION, 2007, 116 (16) : 278 - 278
  • [8] A novel computational model of the human ventricular action potential and Ca transient
    Grandi, Eleonora
    Pasqualini, Francesco S.
    Bers, Donald M.
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 48 (01) : 112 - 121
  • [9] A Novel Computational Model of the Human Ventricular Action Potential and Ca transient
    Grandi, Eleonora
    Pasqualini, Francesco S.
    Puglisi, Jose L.
    Bers, Donald M.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 664A - 665A
  • [10] Efficient Computational Modeling of Human Ventricular Activation and Its Electrocardiographic Representation: A Sensitivity Study
    Cranford, Jonathan P.
    O'Hara, Thomas J.
    Villongco, Christopher T.
    Hafez, Omar M.
    Blake, Robert C.
    Loscalzo, Joseph
    Fattebert, Jean-Luc
    Richards, David F.
    Zhang, Xiaohua
    Glosli, James N.
    McCulloch, Andrew D.
    Krummen, David E.
    Lightstone, Felice C.
    Wong, Sergio E.
    CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2018, 9 (03) : 447 - 467