A general iterative procedure for solving nonsmooth generalized equations

被引:9
作者
Geoffroy, MH [1 ]
Pietrus, A [1 ]
机构
[1] Univ Antilles Guyane, Dept Math, Lab AOC, F-97159 Pointe A Pitre, Guadeloupe, France
关键词
set-valued maps; point-based approximation; pseudo-Lipschitz continuity;
D O I
10.1007/s10589-005-1104-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a general iterative procedure for solving generalized equations in the nonsmooth framework. To this end, we consider a class of functions admitting a certain type of approximation and establish a local convergence theorem that one can apply to a wide range of particular problems.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 1996, SERDICA MATH J
[2]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]   LIPSCHITZ BEHAVIOR OF SOLUTIONS TO CONVEX MINIMIZATION PROBLEMS [J].
AUBIN, JP .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (01) :87-111
[4]   Characterizations of strong regularity for variational inequalities over polyhedral convex sets [J].
Dontchev, AL ;
Rockafellar, RT .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (04) :1087-1105
[5]   AN INVERSE MAPPING-THEOREM FOR SET-VALUED MAPS [J].
DONTCHEV, AL ;
HAGER, WW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) :481-489
[6]  
Dontchev AL, 1996, CR ACAD SCI I-MATH, V322, P327
[7]  
DONTCHEV AL, 1996, AMS LECT APPL MATH, V32, P295
[8]  
Facchinei F, 2003, Finite-Dimensional Variational Inequalities and Complementary Problems, VII
[9]   Engineering and economic applications of complementarity problems [J].
Ferris, MC ;
Pang, JS .
SIAM REVIEW, 1997, 39 (04) :669-713
[10]  
Geoffroy M. H., 2003, RIC MAT, VLII, P231