Random coincidence theorems and applications

被引:3
作者
Fierro, Raul [1 ,2 ]
Martinez, Carlos [1 ]
Morales, Claudio H. [3 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Matemat, Valparaiso 4059, Chile
[2] Univ Valparaiso, Ctr Invest & Modelamiento Fenomenos Aleatorios, Valparaiso 5030, Chile
[3] Univ Alabama, Dept Math, Huntsville, AL 35899 USA
关键词
Multivalued random operators; Quasi-hemiconvergency; Random coincidence point; SET-VALUED MAPS; FIXED-POINT THEOREMS; SPACES; APPROXIMATION;
D O I
10.1016/j.jmaa.2010.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we state conditions under which the existence of deterministic coincidence points of two multivalued random functions implies the existence of random coincidence points. Moreover, two existence results of measurable selections are obtained for the intersection of the multivalued function evaluated at the random coincidence point. Our results extend or improve some theorems in the literature. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 13 条
[1]   Coincidence points, generalized I-nonexpansive multimaps, and applications [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (07) :2180-2188
[2]   Best approximation, coincidence and fixed point theorems for quasi-lower semicontinuous set-valued maps in hyperconvex metric spaces [J].
Amini-Harandi, A. ;
Farajzadeh, A. P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5151-5156
[3]   Best approximation, coincidence and fixed point theorems for set-valued maps in R-trees [J].
Amini-Harandi, A. ;
Farajzadeh, A. P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1649-1653
[4]   Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory [J].
Balaj, Mircea ;
Lin, Lai-Jiu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :393-403
[5]   Coincidence and fixed points for maps on topological spaces [J].
Ciric, Ljubomir .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (17) :3100-3106
[6]   Fixed Point Theorems for Random Lower Semi-Continuous Mappings [J].
Fierro, Raul ;
Martinez, Carlos ;
Morales, Claudio H. .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[7]   Collective fixed point theorem and coincidence theorems in FC-spaces [J].
He, Rong-Hua ;
Li, Hong-Xu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) :227-235
[8]  
Himmelberg C. J., 1975, Fund. Math., V87, P53
[9]  
KURATOWSKI K, 1965, B ACAD POL SCI SMAP, V13, P397
[10]   Random fixed points of K-set- and pseudo-contractive random maps [J].
Shahzad, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (02) :173-181