Degradation and Characterisation of Electrospun Polycaprolactone (PCL) and Poly(lactic-co-glycolic acid) (PLGA) Scaffolds for Vascular Tissue Engineering

被引:44
|
作者
Bazgir, Morteza [1 ]
Zhang, Wei [2 ,3 ]
Zhang, Ximu [4 ,5 ]
Elies, Jacobo [6 ]
Saeinasab, Morvarid [7 ]
Coates, Phil [8 ]
Youseffi, Mansour [1 ]
Sefat, Farshid [1 ,8 ]
机构
[1] Univ Bradford, Sch Engn, Dept Biomed & Elect Engn, Bradford BD7 1DP, W Yorkshire, England
[2] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[3] Sichuan Univ, Adv Polymer Mat Res Ctr, Shishi 362700, Peoples R China
[4] Chongqing Med Univ, Chongqing Key Lab Oral Dis & Biomed Sci, Stomatol Hosp, Chongqing 401174, Peoples R China
[5] Chongqing Med Univ, Chongqing Municipal Key Lab Oral Biomed Engn High, Stomatol Hosp, Chongqing 401174, Peoples R China
[6] Univ Bradford, Fac Life Sci, Sch Pharm & Med Sci, Bradford BD7 1DP, W Yorkshire, England
[7] Ferdowsi Univ Mashhad, Fac Sci, Dept Biol, Mashhad 9177948974, Razavi Khorasan, Iran
[8] Univ Bradford, Interdisciplinary Res Ctr Polymer Sci & Technol P, Bradford BD7 1DP, W Yorkshire, England
关键词
electrospinning; polycaprolactone (PCL); Poly(lactic-co-glycolic acid) (PLGA); tissue engineering; porous biodegradable membrane; degradation; tensile test; MESENCHYMAL STEM-CELLS; IN-VITRO; NATURAL POLYMERS; PORE-SIZE; NANOENGINEERED BIOMATERIALS; MECHANICAL-PROPERTIES; POROUS STRUCTURE; ALIGNED PLGA; FABRICATION; BONE;
D O I
10.3390/ma14174773
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current study aimed to evaluate the characteristics and the effects of degradation on the structural properties of Poly(lactic-co-glycolic acid) (PLGA)- and polycaprolactone (PCL)-based nanofibrous scaffolds. Six scaffolds were prepared by electrospinning, three with PCL 15% (w/v) and three with PLGA 10% (w/v), with electrospinning processing times of 30, 60 and 90 min. Both types of scaffolds displayed more robust mechanical properties with increased spinning times. The tensile strength of both scaffolds with 90-min electrospun membranes did not show a significant difference in their strengths, as the PCL and PLGA scaffolds measured at 1.492 MPa +/- 0.378 SD and 1.764 MPa +/- 0.7982 SD, respectively. All membranes were shown to be hydrophobic under a wettability test. A degradation behaviour study was performed by immersing all scaffolds in phosphate-buffered saline (PBS) solution at room temperature for 12 weeks and for 4 weeks at 37 degrees C. The effects of degradation were monitored by taking each sample out of the PBS solution every week, and the structural changes were investigated under a scanning electron microscope (SEM). The PCL and PLGA scaffolds showed excellent fibre structure with adequate degradation, and the fibre diameter, measured over time, showed slight increase in size. Therefore, as an example of fibre water intake and progressive degradation, the scaffold's percentage weight loss increased each week, further supporting the porous membrane's degradability. The pore size and the porosity percentage of all scaffolds decreased substantially over the degradation period. The conclusion drawn from this experiment is that PCL and PLGA hold great promise for tissue engineering and regenerative medicine applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition
    Liu, Huinan
    Slamovich, Elliott B.
    Webster, Thomas J.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2006, 1 (04) : 541 - 545
  • [22] The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics
    Zhao, Lang
    Lin, Kaili
    Zhang, Meili
    Xiong, Chengdong
    Bao, Yihong
    Pang, Xiubing
    Chang, Jiang
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (14) : 4986 - 4993
  • [23] Three-dimensional porous poly(propylene fumarate)-co-poly(lactic-co-glycolic acid) scaffolds for tissue engineering
    Wu, Wei
    Liu, Xifeng
    Zhou, Zifei
    Miller, A. Lee, II
    Lu, Lichun
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (09) : 2507 - 2517
  • [24] Load-bearing biodegradable polycaprolactone-poly (lactic-co-glycolic acid)- beta tri-calcium phosphate scaffolds for bone tissue regeneration
    Kumar, Alok
    Zhang, Yiren
    Terracciano, Amalia
    Zhao, Xiao
    Su, Tsan-Liang
    Kalyon, Dilhan M.
    Katebifar, Sara
    Kumbar, Sangamesh G.
    Yu, Xiaojun
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2019, 30 (05) : 1189 - 1197
  • [25] Microsphere-Based Hierarchically Juxtapositioned Biphasic Scaffolds Prepared from Poly(Lactic-co-Glycolic Acid) and Nanohydroxyapatite for Osteochondral Tissue Engineering
    Shalumon, K. T.
    Sheu, Chialin
    Fong, Yi Teng
    Liao, Han-Tsung
    Chen, Jyh-Ping
    POLYMERS, 2016, 8 (12)
  • [26] Hybrid Randomly Electrospun Poly(lactic-co-glycolic acid):Poly(ethylene oxide) (PLGA:PEO) Fibrous Scaffolds Enhancing Myoblast Differentiation and Alignment
    Evrova, Olivera
    Hosseini, Vahid
    Milleret, Vincent
    Palazzolo, Gemma
    Zenobi-Wong, Marcy
    Sulser, Tullio
    Buschmann, Johanna
    Eberli, Daniel
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (46) : 31574 - 31586
  • [27] Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations
    Shi, Yanni
    Han, Hao
    Quan, Haiyu
    Zang, Yongju
    Wang, Ning
    Ren, Guizhi
    Xing, Melcolm
    Wu, Qilin
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 43 : 102 - 108
  • [28] Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering
    Honghyun Park
    Kuen Yong Lee
    Seung Jin Lee
    Ko Eun Park
    Won Ho Park
    Macromolecular Research, 2007, 15 : 238 - 243
  • [29] Plasma-treated poly(lactic-co-glycolic acid) nanofibers for tissue engineering
    Park, Honghyun
    Lee, Kuen Yong
    Lee, Seung Jin
    Park, Ko Eun
    Park, Won Ho
    MACROMOLECULAR RESEARCH, 2007, 15 (03) : 238 - 243
  • [30] Poly(Lactic-Co-Glycolic Acid) Microparticles for the Delivery of Model Drug Compounds for Applications in Vascular Tissue Engineering
    Wyse, Jordyn M.
    Sullivan, Bryan A.
    Lopez, Priscilla
    Guda, Teja
    Rathbone, Christopher R.
    Wechsler, Marissa E.
    CELLS TISSUES ORGANS, 2024, 213 (06) : 475 - 485