Verifying Binarized Neural Networks by Angluin-Style Learning

被引:23
作者
Shih, Andy [1 ]
Darwiche, Adnan [1 ]
Choi, Arthur [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
来源
THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2019 | 2019年 / 11628卷
关键词
Verification; Neural networks; Decision Diagrams; KNOWLEDGE COMPILATION;
D O I
10.1007/978-3-030-24258-9_25
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of verifying the behavior of binarized neural networks on some input region. We propose an Angluin-style learning algorithm to compile a neural network on a given region into an Ordered Binary Decision Diagram (OBDD), using a SAT solver as an equivalence oracle. The OBDD allows us to efficiently answer a range of verification queries, including counting, computing the probability of counterexamples, and identifying common characteristics of counterexamples. We also present experimental results on verifying binarized neural networks that recognize images of handwritten digits.
引用
收藏
页码:354 / 370
页数:17
相关论文
共 36 条
  • [1] LEARNING REGULAR SETS FROM QUERIES AND COUNTEREXAMPLES
    ANGLUIN, D
    [J]. INFORMATION AND COMPUTATION, 1987, 75 (02) : 87 - 106
  • [2] Bailleux O, 2003, LECT NOTES COMPUT SC, V2833, P108
  • [3] Bova S, 2016, AAAI CONF ARTIF INTE, P929
  • [4] BRYANT RE, 1986, IEEE T COMPUT, V35, P677, DOI 10.1109/TC.1986.1676819
  • [5] Cadoli M, 1997, AI COMMUN, V10, P137
  • [6] Verification of Binarized Neural Networks via Inter-neuron Factoring (Short Paper)
    Cheng, Chih-Hong
    Nuehrenberg, Georg
    Huang, Chung-Hao
    Ruess, Harald
    [J]. VERIFIED SOFTWARE: THEORIES, TOOLS, AND EXPERIMENTS, (VSTTE 2018), 2018, 11294 : 279 - 290
  • [7] Choi A., 2019, AAAI SPRING S VER NE
  • [8] Same-decision probability: A confidence measure for threshold-based decisions
    Choi, Arthur
    Xue, Yexiang
    Darwiche, Adnan
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (09) : 1415 - 1428
  • [9] A knowledge compilation map
    Darwiche, A
    Marquis, P
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2002, 17 : 229 - 264
  • [10] Darwiche A, 2014, TRACTABILITY, P141