Inhibition of erythrocyte cation channels by erythropoietin

被引:135
作者
Myssina, S
Huber, SM
Birka, C
Lang, PA
Lang, KS
Friedrich, B
Risler, T
Wieder, T
Lang, F
机构
[1] Univ Tubingen, Inst Physiol, Dept Physiol, D-72076 Tubingen, Germany
[2] Univ Tubingen, Univ Med Ctr, Dept Internal Med, Tubingen, Germany
来源
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY | 2003年 / 14卷 / 11期
关键词
D O I
10.1097/01.ASN.0000093253.42641.C1
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Recombinant human erythropoietin therapy is used to counteract anemia that is the result of renal insufficiency. It stimulates the formation of peripheral blood erythrocytes by inhibiting apoptosis of erythrocyte precursor cells. Mature erythrocytes have similarly been shown to undergo apoptosis. Hyperosmotic shock and Cl- removal activate a Ca2+-permeable, ethylisopropylamiloride-inhibitable cation channel. The subsequent increase of cytosolic Ca2+ activates a scramblase that breaks down cell membrane phosphatidylserine asymmetry, leading to annexin binding. Studied was whether channel activity and erythrocyte cell death are regulated by erythropoietin. Scatchard plot analysis disclosed low-abundance, high-affinity binding of 125 I-erythropoietin to erythrocytes. Whole cell patch clamp experiments revealed significant inhibition of the ethylisopropylamiloride-sensitive current by 1 U/ml erythropoietin. Cl- removal triggered annexin binding, an effect abrogated by erythropoietin (1 U/ml) but not by GM-CSF (10 ng/ml). Osmotic shock (700 mOsm) stimulated annexin binding within 24 h in the majority of the erythrocytes, an effect blunted by erythropoietin (I U/ml) but not by GM-CSF (10 ng/ml). In the nominal absence of Ca2+, the effect of osmotic shock was blunted and the effect of erythropoietin abolished. In hemodialysis patients, intravenous administration of erythropoietin (50 IU/kg) within 4 h decreased the number of annexin binding circulating erythrocytes. Erythropoietin binds to erythrocytes and inhibits volume-sensitive erythrocyte cation channels and thus the breakdown of phosphatidylserine asymmetry after activation of this channel. The effect could prolong the erythrocyte lifespan and may contribute to the enhancement of the erythrocyte number during erythropoietin therapy in dialysis patients.
引用
收藏
页码:2750 / 2757
页数:8
相关论文
共 55 条
[1]  
ADAMSON JW, 1994, SEMIN ONCOL, V21, P9
[2]  
ANDREE HAM, 1990, J BIOL CHEM, V265, P4923
[3]   Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells) [J].
Bao, HF ;
Jacobs-Helber, SM ;
Lawson, AE ;
Penta, K ;
Wickrema, A ;
Sawyer, ST .
BLOOD, 1999, 93 (11) :3757-3773
[4]   LIQUID JUNCTION POTENTIALS AND SMALL-CELL EFFECTS IN PATCH-CLAMP ANALYSIS [J].
BARRY, PH ;
LYNCH, JW .
JOURNAL OF MEMBRANE BIOLOGY, 1991, 121 (02) :101-117
[5]  
BENJAMIN LJ, 1986, BLOOD, V67, P544
[6]   Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis [J].
Berg, CP ;
Engels, IH ;
Rothbart, A ;
Lauber, K ;
Renz, A ;
Schlosser, SF ;
Schulze-Osthoff, K ;
Wesselborg, S .
CELL DEATH AND DIFFERENTIATION, 2001, 8 (12) :1197-1206
[7]   Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia [J].
Boas, FE ;
Forman, L ;
Beutler, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :3077-3081
[8]  
Bonomini M, 1999, J AM SOC NEPHROL, V10, P1982
[9]   Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria [J].
Bratosin, D ;
Estaquier, J ;
Petit, F ;
Arnoult, D ;
Quatannens, B ;
Tissier, JP ;
Slomianny, C ;
Sartiaux, C ;
Alonso, C ;
Huart, JJ ;
Montreuil, J ;
Ameisen, JC .
CELL DEATH AND DIFFERENTIATION, 2001, 8 (12) :1143-1156
[10]  
Brines M, 2002, ONCOLOGY-NY, V16, P79