Finite-Temperature Critical Behavior of Mutual Information

被引:59
作者
Singh, Rajiv R. P. [1 ]
Hastings, Matthew B. [2 ,3 ]
Kallin, Ann B. [4 ]
Melko, Roger G. [4 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
[4] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SYSTEMS;
D O I
10.1103/PhysRevLett.106.135701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study mutual information for Renyi entropy of arbitrary index n, in interacting quantum systems at finite-temperature critical points, using high-temperature expansion, quantum Monte Carlo simulations and scaling theory. We find that, for n > 1, the critical behavior is manifest at two temperatures T(c) and nT(c). For the XXZ model with Ising anisotropy, the coefficient of the area law has a t lnt singularity, whereas the subleading correction from corners has a logarithmic divergence, with a coefficient related to the exact results of Cardy and Peschel. For T < nT(c) there is a constant term associated with broken symmetries that jumps at both T(c) and nT(c), which can be understood in terms of a scaling function analogous to the boundary entropy of Affleck and Ludwig.
引用
收藏
页数:4
相关论文
共 16 条
[1]   UNIVERSAL NONINTEGER GROUND-STATE DEGENERACY IN CRITICAL QUANTUM-SYSTEMS [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :161-164
[2]   BOUNDED AND INHOMOGENEOUS ISING MODELS .2. SPECIFIC-HEAT SCALING FUNCTION FOR A STRIP [J].
AUYANG, H ;
FISHER, ME .
PHYSICAL REVIEW B, 1975, 11 (09) :3469-3487
[3]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[4]   FINITE-SIZE DEPENDENCE OF THE FREE-ENERGY IN TWO-DIMENSIONAL CRITICAL SYSTEMS [J].
CARDY, JL ;
PESCHEL, I .
NUCLEAR PHYSICS B, 1988, 300 (03) :377-392
[5]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[6]   Statistics dependence of the entanglement entropy [J].
Cramer, M. ;
Eisert, J. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[7]   Interacting anyons in topological quantum liquids: The golden chain [J].
Feiguin, Adrian ;
Trebst, Simon ;
Ludwig, Andreas W. W. ;
Troyer, Matthias ;
Kitaev, Alexei ;
Wang, Zhenghan ;
Freedman, Michael H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[8]   PERTURBATION EXPANSIONS FOR QUANTUM MANY-BODY SYSTEMS [J].
GELFAND, MP ;
SINGH, RRP ;
HUSE, DA .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) :1093-1142
[9]   Measuring Renyi Entanglement Entropy in Quantum Monte Carlo Simulations [J].
Hastings, Matthew B. ;
Gonzalez, Ivan ;
Kallin, Ann B. ;
Melko, Roger G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[10]  
ISAKOV SV, ARXIV11021721