Reduced Self-Discharge of Supercapacitors Using Piezoelectric Separators

被引:35
作者
Zhao, Chengyan [1 ,2 ]
Sun, Xidi [1 ,2 ]
Li, Wenshi [2 ]
Shi, Mingwei [2 ]
Ren, Kailiang [1 ,2 ]
Lu, Xianmao [1 ,2 ]
机构
[1] Guangxi Univ, Coll Phys Sci & Technol, Ctr Nanoenergy Res, Nanning 530004, Guangxi, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
self-discharge; supercapacitors; piezoelectric; separators; open-circuit voltage; LAYER; PERFORMANCE; MECHANISMS; CAPACITORS; NANOSHEETS; MOS2;
D O I
10.1021/acsaem.1c01373
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of supercapacitors for long-term energy storage is largely limited by their self-discharge behavior. Finding an effective approach to suppress self-discharge remains a great research challenge. Herein, a porous poly(vinylidene fluoride) (PVDF) membrane with a piezoelectric effect is employed as supercapacitor separators for reduced self-discharge. The PVDF membrane is prepared via a phase-inversion method followed by polarization to induce piezoelectricity. Self-discharge tests indicate that both open-circuit voltage (OCV) decay rate and leakage current of the supercapacitors with piezoelectric PVDF separators are reduced by more than 30% compared to those with nonpiezoelectric separators. The much lower self-discharge rate can be attributed to the impeded diffusion of electrolyte ions across the polarized PVDF separators.
引用
收藏
页码:8070 / 8075
页数:6
相关论文
共 45 条
  • [1] Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors
    Andreas, Heather A.
    Lussier, Kate
    Oickle, Alicia M.
    [J]. JOURNAL OF POWER SOURCES, 2009, 187 (01) : 275 - 283
  • [2] Effects of charge redistribution on self-discharge of electrochemical capacitors
    Black, Jennifer
    Andreas, Heather A.
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (13) : 3568 - 3574
  • [3] Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors
    Chen, Libin
    Bai, Hua
    Huang, Zhifeng
    Li, Lei
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) : 1750 - 1759
  • [4] Graphene and nanostructured MnO2 composite electrodes for supercapacitors
    Cheng, Qian
    Tang, Jie
    Ma, Jun
    Zhang, Han
    Shinya, Norio
    Qin, Lu-Chang
    [J]. CARBON, 2011, 49 (09) : 2917 - 2925
  • [5] Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries
    Conway, BE
    Pell, WG
    Liu, TC
    [J]. JOURNAL OF POWER SOURCES, 1997, 65 (1-2) : 53 - 59
  • [6] Suppressed self-discharge of an aqueous supercapacitor using Earth-abundant materials
    Devese, Samuel
    Nann, Thomas
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 871
  • [7] High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte
    Fan, Le-Qing
    Tu, Qiu-Mei
    Geng, Cheng-Long
    Huang, Jian-Ling
    Gu, Yun
    Lin, Jian-Ming
    Huang, Yun-Fang
    Wu, Ji-Huai
    [J]. ELECTROCHIMICA ACTA, 2020, 331
  • [8] NONLINEAR PIEZOELECTRICITY IN POLY(VINYLIDENE FLUORIDE)
    FUKADA, E
    DATE, M
    NEUMANN, HE
    WENDORFF, JH
    [J]. JOURNAL OF APPLIED PHYSICS, 1988, 63 (05) : 1701 - 1704
  • [9] A high-strength PPESK/PVDF fibrous membrane prepared by coaxial electrospinning for lithium-ion battery separator
    Gong, Wenzheng
    Wang, Xinyu
    Li, Zheng
    Gu, Junfeng
    Ruan, Shilun
    Shen, Changyu
    [J]. HIGH PERFORMANCE POLYMERS, 2019, 31 (08) : 948 - 958
  • [10] Hao T, 2001, ADV MATER, V13, P1847, DOI 10.1002/1521-4095(200112)13:24<1847::AID-ADMA1847>3.0.CO