Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency

被引:134
作者
Cao, Qi [1 ]
Yang, Jiabao [1 ]
Wang, Tong [1 ]
Li, Yuke [2 ,3 ]
Pu, Xingyu [1 ]
Zhao, Junsong [1 ]
Zhang, Yixin [1 ]
Zhou, Hui [1 ]
Li, Xiaoqiang [1 ]
Li, Xuanhua [1 ]
机构
[1] Northwestern Polytech Univ, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Ctr Sci Modeling & Computat, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
ROOM-TEMPERATURE; CATION; LIMIT;
D O I
10.1039/d1ee01800k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal halide perovskites have attracted great attention and are rapidly developing mainly due to their excellent optoelectronic properties. Currently, the efficiency of inverted (p-i-n) PSCs is around 23%, which is catching up with that of the regular structured devices. Short-term and low-efficiency operational stability are the main obstacles to the commercialization of PSCs. Although many modified materials have been proven to effectively enhance device performance, they do not satisfy operational stability at high efficiency. Here, we propose a multidentate-cross-linking strategy, which uses multi-branched and adequate chemical anchor sites in three-dimensional star-polymer to directly chelate perovskite materials in multiple directions, thereby regulating the morphology of perovskite, passivating defects at surface/GBs, inhibiting the non-radiative recombination, and improving the stability of the device. As a result, the modified PSC achieves a 22.74% efficiency, which is one of the highest values reported for the inverted PSCs. Meanwhile, the encapsulated modified device exhibits significant advancement of operational stability with 93% of the initial efficiency (similar to 22.00%) under maximum power point tracking at 45 degrees C for 1000 h, and an estimated T80 (time to retain 80% of the initial efficiency) lasted nearly 4000 h. The three-dimensional star-polymer multidentate-cross-linking strategy has proved to be a new direction for realizing commercial applications of PSCs with excellent operational stability for high-efficiency devices.
引用
收藏
页码:5406 / 5415
页数:10
相关论文
共 47 条
[1]   Shallow and Deep Trap State Passivation for Low-Temperature Processed Perovskite Solar Cells [J].
Azmi, Randi ;
Nurrosyid, Naufan ;
Lee, Sang-Hak ;
Al Mubarok, Muhibullah ;
Lee, Wooseop ;
Hwang, Sunbin ;
Yin, Wenping ;
Tae Kyu Ahn ;
Kim, Tae-Wook ;
Ryu, Du Yeol ;
Do, Young Rag ;
Jang, Sung-Yeon .
ACS ENERGY LETTERS, 2020, 5 (05) :1396-1403
[2]  
Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.142, 10.1038/nenergy.2016.142]
[3]   Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency [J].
Braly, Ian L. ;
deQilettes, Dane W. ;
Pazos-Outon, Luis M. ;
Burke, Sven ;
Ziffer, Mark E. ;
Ginger, David S. ;
Hillhouse, Hugh W. .
NATURE PHOTONICS, 2018, 12 (06) :355-+
[4]   Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer [J].
Cao, Qi ;
Li, Yongjiang ;
Zhang, Hong ;
Yang, Jiabao ;
Han, Jian ;
Xu, Ting ;
Wang, Shuangjie ;
Wang, Zishuai ;
Gao, Bingyu ;
Zhao, Junsong ;
Li, Xiaoqiang ;
Ma, Xiaoyan ;
Zakeeruddin, Shaik Mohammed ;
Sha, Wei E., I ;
Li, Xuanhua ;
Graetzel, Michael .
SCIENCE ADVANCES, 2021, 7 (28)
[5]   Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells [J].
Chen, Keqiang ;
Zhong, Qiaohui ;
Chen, Wen ;
Sang, Binghua ;
Wang, Yingwei ;
Yang, Tingqiang ;
Liu, Yueli ;
Zhang, Yupeng ;
Zhang, Han .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)
[6]   A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTT-Based Small Molecule Additive [J].
Choi, Hyuntae ;
Liu, Xiaoyuan ;
Kim, Hong Il ;
Kim, Dohyun ;
Park, Taiho ;
Song, Seulki .
ADVANCED ENERGY MATERIALS, 2021, 11 (16)
[7]   Investigating the BECCS resource nexus: delivering sustainable negative emissions [J].
Fajardy, Mathilde ;
Chiquier, Solene ;
Mac Dowell, Niall .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (12) :3408-3430
[8]   ACCURACY OF ANALYTICAL EXPRESSIONS FOR SOLAR-CELL FILL FACTORS [J].
GREEN, MA .
SOLAR CELLS, 1982, 7 (03) :337-340
[9]   Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells [J].
Habisreutinger, Severin N. ;
Noel, Nakita K. ;
Snaith, Henry J. ;
Nicholas, Robin J. .
ADVANCED ENERGY MATERIALS, 2017, 7 (01)
[10]   Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells [J].
Han, Tae-Hee ;
Lee, Jin-Wook ;
Choi, Chungseok ;
Tan, Shaun ;
Lee, Changsoo ;
Zhao, Yepin ;
Dai, Zhenghong ;
De Marco, Nicholas ;
Lee, Sung-Joon ;
Bae, Sang-Hoon ;
Yuan, Yonghai ;
Lee, Hyuck Mo ;
Huang, Yu ;
Yang, Yang .
NATURE COMMUNICATIONS, 2019, 10 (1)