Multiple solutions for a nonhomogeneous Dirichlet problem in Orlicz-Sobolev spaces

被引:20
作者
Cammaroto, F. [1 ]
Vilasi, L. [1 ]
机构
[1] Univ Messina, Dept Math, I-98166 Messina, Italy
关键词
Orlicz-Sobolev space; Nonhomogeneous differential operator; Critical point; Weak solution; BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-OPERATORS; EIGENVALUE PROBLEM;
D O I
10.1016/j.amc.2012.05.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, moving within the framework of Orlicz-Sobolev spaces, we guarantee through variational arguments the existence of three weak solutions to the nonhomogeneous boundary value problem: -div(a(vertical bar del u(x)vertical bar)del u(x)) = lambda f(x, u) + mu g(x, u) in Omega, u = 0 on partial derivative Omega, with Omega bounded domain in R-n with smooth boundary Omega partial derivative, lambda, mu real parameters, f, g : Omega x R -> R Caratheodory functions and the function t -> a(vertical bar t vertical bar)t odd, increasing homeomorphism from R onto R. Applications and comparisons are also presented; in particular, we improve a result for an eigenvalue problem established by Mihailescu and Repovs in [15]. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:11518 / 11527
页数:10
相关论文
共 26 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
[Anonymous], 1971, J. Funct. Anal.
[3]  
[Anonymous], 1961, Convex functions and Orlicz spaces
[4]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[5]   Mountain pass type solutions for quasilinear elliptic equations [J].
Clément, P ;
García-Huidobro, M ;
Manásevich, R ;
Schmitt, K .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (01) :33-62
[6]  
Dankert G., 1966, THESIS U KOLN
[7]   NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES [J].
DONALDSON, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (03) :507-+
[8]   On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting [J].
Garcia-Huidobro, M. ;
Le, V. K. ;
Manasevich, R. ;
Schmitt, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02) :207-225
[9]  
GOSSEZ JP, 1986, P SYMP PURE MATH, V45, P455
[10]   NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR EQUATIONS WITH RAPIDLY (OR SLOWLY) INCREASING COEFFICIENTS [J].
GOSSEZ, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :163-205