A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions

被引:39
作者
Hou, Ying [1 ]
Bao, Mei-Ling [2 ]
Wu, Chen-Jiang [1 ]
Zhang, Jing [1 ]
Zhang, Yu-Dong [1 ]
Shi, Hai-Bin [1 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 1, Dept Radiol, 300 Guangzhou Rd, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Dept Pathol, 300 Guangzhou Rd, Nanjing 210009, Jiangsu, Peoples R China
关键词
Clinically significant prostate cancer; Radiomics; Machine learning; PI-RADS score 3; MULTI-PARAMETRIC MRI; MULTIPARAMETRIC MRI; DATA SYSTEM; IMPROVE; BIOPSY; VOLUME; V2;
D O I
10.1007/s00261-020-02678-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose PI-RADS score 3 is recognized as equivocal likelihood of clinically significant prostate cancer (csPCa) occurrence. We aimed to develop a Radiomics machine learning (RML)-based redefining score to screen out csPCa in equivocal PI-RADS score 3 category. Methods Total of 263 patients with the dominant index lesion scored PI-RADS 3 who underwent biopsy and/or follow-up formed the primary cohort. One-step RML (RML-i) model integrated radiomic features of T2WI, DWI, and ADC images all together, and two-step RML (RML-ii) model integrated the three independent radiomic signatures from T2WI (T2WI(RS)), DWI (DWIRS), and ADC (ADC(RS)) separately into a regression model. The two RML models, as well as T2WI(RS), DWIRS, and ADC(RS), were compared using the receiver operating characteristic-derived area under the curve (AUC), calibration plot, and decision-curve analysis (DCA). Two radiologists were asked to give a subjective binary assessment, and Cohen's kappa statistics were calculated. Results A total of 59/263 (22.4%) csPCa were identified. Inter-reader agreement was moderate (Kappa = 0.435). The AUC of RML-i (0.89; 95% CI 0.88-0.90) is higher (p = 0.003) than that of RML-ii (0.87; 95% CI 0.86-0.88). The DCA demonstrated that the RML-i and RML-ii significantly improved risk prediction at threshold probabilities of csPCa at 20% to 80% compared with doing-none or doing-all by PI-RADS score 3 or stratifying by separated DWIRS, ADC(RS), or T2WI(RS). Conclusion Our RML models have the potential to predict csPCa in PI-RADS score 3 lesions, thus can inform the decision making process of biopsy.
引用
收藏
页码:4223 / 4234
页数:12
相关论文
共 30 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]   Characterizing Clinically Significant Prostate Cancer Using Template Prostate Mapping Biopsy [J].
Ahmed, Hashim Uddin ;
Hu, Yipeng ;
Carter, Tim ;
Arumainayagam, Nimalan ;
Lecornet, Emilie ;
Freeman, Alex ;
Hawkes, David ;
Barratt, Dean C. ;
Emberton, Mark .
JOURNAL OF UROLOGY, 2011, 186 (02) :458-464
[3]   Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use [J].
Barentsz, Jelle O. ;
Weinreb, Jeffrey C. ;
Verma, Sadhna ;
Thoeny, Harriet C. ;
Tempany, Clare M. ;
Shtern, Faina ;
Padhani, Anwar R. ;
Margolis, Daniel ;
Macura, Katarzyna J. ;
Haider, Masoom A. ;
Cornud, Francois ;
Choyke, Peter L. .
EUROPEAN UROLOGY, 2016, 69 (01) :41-49
[4]   Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values [J].
Bonekamp, David ;
Kohl, Simon ;
Wiesenfarth, Manuel ;
Schelb, Patrick ;
Radtke, Jan Philipp ;
Goetz, Michael ;
Kickingereder, Philipp ;
Yaqubi, Kaneschka ;
Hitthaler, Bertram ;
Gaehlert, Nils ;
Kuder, Tristan Anselm ;
Deister, Fenja ;
Freitag, Martin ;
Hohenfellner, Markus ;
Hadaschik, Boris A. ;
Schlemmer, Heinz-Peter ;
Maier-Hein, Klaus H. .
RADIOLOGY, 2018, 289 (01) :128-137
[5]   Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2 [J].
Chen, Tong ;
Li, Mengjuan ;
Gu, Yuefan ;
Zhang, Yueyue ;
Yang, Shuo ;
Wei, Chaogang ;
Wu, Jiangfen ;
Li, Xin ;
Zhao, Wenlu ;
Shen, Junkang .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (03) :875-884
[6]   PI-RADS Version 2 Category on 3 Tesla Multiparametric Prostate Magnetic Resonance Imaging Predicts Oncologic Outcomes in Gleason 3 D 4 Prostate Cancer on Biopsy [J].
Faiena, Izak ;
Salmasi, Amirali ;
Mendhiratta, Neil ;
Markovic, Daniela ;
Ahuja, Preeti ;
Hsu, William ;
Elashoff, David A. ;
Raman, Steven S. ;
Reiter, Robert E. .
JOURNAL OF UROLOGY, 2019, 201 (01) :91-97
[7]   Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study [J].
Ginsburg, Shoshana B. ;
Algohary, Ahmad ;
Pahwa, Shivani ;
Gulani, Vikas ;
Ponsky, Lee ;
Aronen, Hannu J. ;
Bostrom, Peter J. ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Taimen, Pekka ;
Villani, Robert ;
Stricker, Phillip ;
Rastinehad, Ardeshir R. ;
Jambor, Ivan ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (01) :184-193
[8]   Sub-differentiating equivocal PI-RADS-3 lesions in multiparametric magnetic resonance imaging of the prostate to improve cancer detection [J].
Hansen, N. L. ;
Koo, B. C. ;
Warren, A. Y. ;
Kastner, C. ;
Barrett, T. .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 95 :307-313
[9]   Which clinical and radiological characteristics can predict clinically significant prostate cancer in PI-RADS 3 lesions? A retrospective study in a high-volume academic center [J].
Hermie, Isabeau ;
Van Besien, Jeroen ;
De Visschere, Pieter ;
Lumen, Nicolaas ;
Decaestecker, Karel .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 114 :92-98
[10]   Validation of IMPROD biparametric MRI in men with clinically suspected prostate cancer: A prospective multi-institutional trial [J].
Jambor, Ivan ;
Verho, Janne ;
Ettala, Otto ;
Knaapila, Juha ;
Taimen, Pekka ;
Syvanen, Kari T. ;
Kiviniemi, Aida ;
Kahkonen, Esa ;
Perez, Ileana Montoya ;
Seppanen, Marjo ;
Rannikko, Antti ;
Oksanen, Outi ;
Riikonen, Jarno ;
Vimpeli, Sanna Mari ;
Kauko, Tommi ;
Merisaari, Harri ;
Kallajoki, Markku ;
Mirtti, Tuomas ;
Lamminen, Tarja ;
Saunavaara, Jani ;
Aronen, Hannu J. ;
Bostrom, Peter J. .
PLOS MEDICINE, 2019, 16 (06)