Fatigue crack growth analysis of a homogeneous plate in the presence of multiple defects using extended isogeometric analysis

被引:25
作者
Bhardwaj, G. [1 ]
Singh, I. V. [1 ]
机构
[1] Indian Inst Technol, Dept Mech & Ind Engn, Roorkee, UK, India
关键词
Extended isogeometric analysis (XIGA); Fatigue life; Paris law; Edge crack; Holes; Inclusions; Stress intensity factor (SIF); BOUNDARY-ELEMENT METHOD; FINITE-ELEMENTS; NUMERICAL-SIMULATION; SHAPE OPTIMIZATION; NURBS; REFINEMENT; CONTINUITY;
D O I
10.1007/s40430-014-0232-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, extended Isogeometric analysis (XIGA) is successfully extended to evaluate the fatigue life of a homogenous finite plate in the presence of multiple defects (cracks, holes and inclusions) under cyclic loading condition. In isogeometric analysis, same basis functions, i.e. non uniform rational B-splines are used for defining the geometry and solution. In XIGA, the crack faces are modeled by discontinuous Heaviside jump functions, whereas the singularity in stress field at the crack tip is modeled by crack tip enrichment functions. The modeling of holes and inclusions is performed by jump function and distance function, respectively. These simulations show that the defects/discontinuities, distributed near to the main crack, have significant effect on the SIF values, whereas the defects/discontinuities away from the main crack have got very small effect on the SIFs.
引用
收藏
页码:1065 / 1082
页数:18
相关论文
共 52 条
[1]   The role of continuity in residual-based variational multiscale modeling of turbulence [J].
Akkerman, I. ;
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Hulshoff, S. .
COMPUTATIONAL MECHANICS, 2008, 41 (03) :371-378
[2]  
[Anonymous], 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, DOI DOI 10.1016/j.advengsoft.2011.06.010
[3]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[4]   Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Reali, A. ;
Scovazzi, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) :173-201
[5]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[6]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[7]  
2-S
[8]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[9]   A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM [J].
Benson, D. J. ;
Bazilevs, Y. ;
De Luycker, E. ;
Hsu, M. -C. ;
Scott, M. ;
Hughes, T. J. R. ;
Belytschko, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) :765-785
[10]   Numerical Simulation of Plane Crack Problems using Extended Isogeometric Analysis [J].
Bhardwaj, G. ;
Singh, I. V. ;
Mishra, B. K. .
INTERNATIONAL CONFERENCE ON DESIGN AND MANUFACTURING (ICONDM2013), 2013, 64 :661-670