On De Giorgi's conjecture in dimension N ≥ 9

被引:187
作者
del Pino, Manuel [1 ]
Kowalczyk, Michal [1 ]
Wei, Juncheng [2 ]
机构
[1] Univ Chile, Santiago, Chile
[2] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China
关键词
MEAN-CURVATURE HYPERSURFACES; ALLEN-CAHN EQUATION; PHASE-TRANSITIONS; DE-GIORGI; SINGULAR PERTURBATION; ELLIPTIC-EQUATIONS; GRADIENT THEORY; CONVERGENCE; REGULARITY; SYMMETRY;
D O I
10.4007/annals.2011.174.3.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated conjecture due to De Giorgi states that any bounded solution of the equation Delta u + (1 - u(2))u = 0 in R-N with partial derivative(yN)u > 0 must be such that its level sets {u = lambda} are all hyperplanes, at least for dimension N <= 8. A counterexample for N >= 9 has long been believed to exist. Starting from a minimal graph F which is not a hyperplane, found by Bombieri, De Giorgi and Giusti in R-N, N >= 9, we prove that for any small alpha > 0 there is a bounded solution u(alpha)(y) with partial derivative(yN)u(alpha) > 0, which resembles tanh (t/root 2), where t = t(y) denotes a choice of signed distance to the blown-up minimal graph Gamma alpha := alpha(-1)Gamma. This solution is a counterexample to De Giorgi's conjecture for N >= 9.
引用
收藏
页码:1485 / 1569
页数:85
相关论文
共 37 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[3]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[4]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO
[5]  
2-U
[6]  
Berestycki H, 2000, DUKE MATH J, V103, P375
[7]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[8]  
Cabré X, 2009, J EUR MATH SOC, V11, P819
[9]  
CAFFARELLI LA, 1995, COMMUN PUR APPL MATH, V48, P1
[10]   Phase transitions:: Uniform regularity of the intermediate layers [J].
Caffarelli, LA ;
Córdoba, A .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 593 :209-235