Inequalities for the Casorati Curvature of Totally Real Spacelike Submanifolds in Statistical Manifolds of Type Para-Kahler Space Forms

被引:10
作者
Chen, Bang-Yen [1 ]
Decu, Simona [2 ,3 ]
Vilcu, Gabriel-Eduard [4 ,5 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Bucharest Univ Econ Studies, Dept Appl Math, 6 Piata Romana, Bucharest 010374, Romania
[3] Romanian Acad, Costin C Kiritescu Natl Inst Econ Res, Ctr Mt Econ CE MONT, 13 Calea 13 Septembrie, Bucharest 030508, Romania
[4] Univ Bucharest, Res Ctr Geometry Topol & Algebra, Fac Math & Comp Sci, Str Acad 14,Sect 1, Bucharest 70109, Romania
[5] Petr Gas Univ Ploiesti, Dept Cybernet Econ Informat Finance & Accountancy, Bd Bucuresti 39, Ploiesti 100680, Romania
关键词
Casorati curvature; statistical manifold of type para-Kahler space form; totally real submanifold; H-UMBILICAL SUBMANIFOLDS; LAGRANGIAN SUBMANIFOLDS; CLASSIFICATION; GEOMETRY;
D O I
10.3390/e23111399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this article is to establish some inequalities concerning the normalized delta-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant) of totally real spacelike submanifolds in statistical manifolds of the type para-Kahler space form. Moreover, this study is focused on the equality cases in these inequalities. Some examples are also provided.
引用
收藏
页数:13
相关论文
共 44 条
[1]  
Amari S. I., 1985, Lecture Notes in Statistics
[2]   Hamiltonian stability of Hamiltonian minimal Lagrangian submanifolds in pseudo- and para-Kahler manifolds [J].
Anciaux, Henri ;
Georgiou, Nikos .
ADVANCES IN GEOMETRY, 2014, 14 (04) :587-612
[3]   Classification of Casorati ideal Lagrangian submanifolds in complex space forms [J].
Aquib, Mohd. ;
Lee, Jae Won ;
Vilcu, Gabriel-Eduard ;
Yoon, Dae Won .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 63 :30-49
[4]  
Boso F., 2022, J COMPUT PHYS, V467, DOI [10.1016/j.jcp.2022.111438, DOI 10.1016/J.JCP.2022.111438]
[5]  
CASORATI F, 1890, ACTA MATH-DJURSHOLM, V14, P95, DOI DOI 10.1007/BF02413317
[6]  
Chen B.Y., 2011, Pseudo-Riemannian Geometry, -invariants and Applications
[7]   Recent developments in δ-Casorati curvature invariants [J].
CHEN, Bang -Yen .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) :1-46
[8]   Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds [J].
Chen, Bang-Yen .
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01) :6-45
[9]   Classification of δ(2, n-2)-ideal Lagrangian submanifolds in n-dimensional complex space forms [J].
Chen, Bang-Yen ;
Dillen, Franki ;
Van der Veken, Joeri ;
Vrancken, Luc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :1456-1485
[10]  
Chen BY, 2011, INT ELECTRON J GEOM, V4, P1