Impact of cancer metabolism on therapy resistance - Clinical implications

被引:79
作者
Goncalves, Ana Cristina [1 ,2 ,3 ,4 ]
Richiardone, Elena [5 ]
Jorge, Joana [1 ,2 ,3 ,4 ]
Polonia, Barbara [6 ,7 ]
Xavier, Cristina P. R. [6 ,7 ]
Salaroglio, Iris Chiara [8 ]
Riganti, Chiara [8 ]
Vasconcelos, M. Helena [6 ,7 ,9 ]
Corbet, Cyril [5 ]
Sarmento-Ribeiro, Ana Bela [1 ,2 ,3 ,4 ,10 ]
机构
[1] Univ Coimbra, Lab Oncobiol & Hematol LOH, Fac Med FMUC, Coimbra, Portugal
[2] Univ Coimbra, Univ Clin Hematol, Fac Med FMUC, Coimbra, Portugal
[3] Univ Coimbra, Coimbra Inst Clin & Biomed Res iCBR, FMUC, Grp Environm Genet & Oncobiol CIMAGO, Coimbra, Portugal
[4] Ctr Innovat Biomed & Biotechnol CIBB, Coimbra, Portugal
[5] UCLouvain, Inst Rech Expt & Clin IREC, Pole Pharmacol & Therapeut FATH, Louvain, Belgium
[6] Univ Porto, i3S Inst Invest & Inovacao Saude, P-4200135 Porto, Portugal
[7] Univ Porto, IPATIMUP Inst Mol Pathol & Immunol, Canc Drug Resistance Grp, Porto, Portugal
[8] Univ Torino, Sch Med, Dept Oncol, Turin, Italy
[9] Univ Porto, Dept Biol Sci, FFUP Fac Pharm, Porto, Portugal
[10] Ctr Hosp & Univ Coimbra CHUC, Hematol Serv, Coimbra, Portugal
关键词
Therapy resistance; Tumor microenvironment; Intratumor heterogeneity; Metabolic plasticity; Glycolysis; Oxidative phosphorylation; Cancer metabolism; OVERCOME DRUG-RESISTANCE; MITOCHONDRIAL PYRUVATE CARRIER; ACUTE MYELOID-LEUKEMIA; MARROW STROMAL CELLS; BREAST-CANCER; TUMOR MICROENVIRONMENT; OXIDATIVE-PHOSPHORYLATION; MULTIDRUG-RESISTANCE; GLUTAMINE-METABOLISM; PROSTATE-CANCER;
D O I
10.1016/j.drup.2021.100797
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
引用
收藏
页数:28
相关论文
共 408 条
[1]   Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp [J].
Alfarouk, Khalid O. ;
Stock, Christian-Martin ;
Taylor, Sophie ;
Walsh, Megan ;
Muddathir, Abdel Khalig ;
Verduzco, Daniel ;
Bashir, Adil H. H. ;
Mohammed, Osama Y. ;
Elhassan, Gamal O. ;
Harguindey, Salvador ;
Reshkin, Stephan J. ;
Ibrahim, Muntaser E. ;
Rauch, Cyril .
CANCER CELL INTERNATIONAL, 2015, 15
[2]   Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling [J].
Allen, Elizabeth ;
Mieville, Pascal ;
Warren, Carmen M. ;
Saghafinia, Sadegh ;
Li, Leanne ;
Peng, Mei-Wen ;
Hanahan, Douglas .
CELL REPORTS, 2016, 15 (06) :1144-1160
[3]   MicroRNA signature refine response prediction in CML [J].
Alves, Raquel ;
Goncalves, Ana Cristina ;
Jorge, Joana ;
Marques, Gilberto ;
Luis, Dino ;
Ribeiro, Andre B. ;
Freitas-Tavares, Paulo ;
Oliveiros, Barbara ;
Almeida, Antonio M. ;
Sarmento-Ribeiro, Ana Bela .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Drug transporters play a key role in the complex process of Imatinib resistance in vitro [J].
Alves, Raquel ;
Fonseca, Ana Raquel ;
Goncalves, Ana C. ;
Ferreira-Teixeira, Margarida ;
Lima, Joana ;
Abrantes, Ana M. ;
Alves, Vera ;
Rodrigues-Santos, Paulo ;
Jorge, Lenia ;
Matoso, Eunice ;
Carreira, Isabel M. ;
Botelho, Maria Filomena ;
Sarmento-Ribeiro, Ana B. .
LEUKEMIA RESEARCH, 2015, 39 (03) :355-360
[5]   The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells [J].
Andreucci, Elena ;
Peppicelli, Silvia ;
Ruzzolini, Jessica ;
Bianchini, Francesca ;
Biagioni, Alessio ;
Papucci, Laura ;
Magnelli, Lucia ;
Mazzanti, Benedetta ;
Stecca, Barbara ;
Calorini, Lido .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2020, 98 (10) :1431-1446
[6]   Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer [J].
Antonia, SJ ;
Mirza, N ;
Fricke, I ;
Chiappori, A ;
Thompson, P ;
Williams, N ;
Bepler, G ;
Simon, G ;
Janssen, W ;
Lee, JH ;
Menander, K ;
Chada, S ;
Gabrilovich, DI .
CLINICAL CANCER RESEARCH, 2006, 12 (03) :878-887
[7]   Increased Lactate Secretion by Cancer Cells Sustains Non-cell-autonomous Adaptive Resistance to MET and EGFR Targeted Therapies [J].
Apicella, Maria ;
Giannoni, Elisa ;
Fiore, Stephany ;
Ferrari, Karin Johanna ;
Fernandez-Perez, Daniel ;
Isella, Claudio ;
Granchi, Carlotta ;
Minutolo, Filippo ;
Sottile, Antonino ;
Comoglio, Paolo Maria ;
Medico, Enzo ;
Pietrantonio, Filippo ;
Volante, Marco ;
Pasini, Diego ;
Chiarugi, Paola ;
Giordano, Silvia ;
Corso, Simona .
CELL METABOLISM, 2018, 28 (06) :848-+
[8]   The multi-factorial nature of clinical multidrug resistance in cancer [J].
Assaraf, Yehuda G. ;
Brozovic, Anamaria ;
Goncalves, Ana Cristina ;
Jurkovicova, Dana ;
Line, Aija ;
Machuqueiro, Miguel ;
Saponara, Simona ;
Sarmento-Ribeiro, Ana Bela ;
Xavier, Cristina P. R. ;
Vasconcelos, M. Helena .
DRUG RESISTANCE UPDATES, 2019, 46
[9]  
Avendaño C, 2008, MEDICINAL CHEMISTRY OF ANTICANCER DRUGS, P9, DOI 10.1016/B978-0-444-52824-7.00002-0
[10]   Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance [J].
Avnet, Sofia ;
Lemma, Silvia ;
Cortini, Margherita ;
Pellegrini, Paola ;
Perut, Francesca ;
Zini, Nicoletta ;
Kusuzaki, Katsuyuki ;
Chano, Tokuhiro ;
Grisendi, Giulia ;
Dominici, Massimo ;
De Milito, Angelo ;
Baldini, Nicola .
ONCOTARGET, 2016, 7 (39) :63408-63423