Solution of the Hamilton - Jacobi Equations in an Electromagnetic Field Using Separation of Variables Method - Staeckel Boundary Conditions

被引:0
作者
Al-Khamiseh, B. M. [1 ]
Hijjawi, R. S. [2 ]
Khalifeh, J. M. [1 ]
机构
[1] Univ Jordan, Dept Phys, Amman 11942, Jordan
[2] Mutah Univ, Dept Phys, Al Karak, Jordan
来源
JORDAN JOURNAL OF PHYSICS | 2020年 / 13卷 / 01期
关键词
Lagrangian mechanics; Electromagnetic field; Hamilton-Jacobi; Staeckel boundary conditions; Newtonian mechanics; SUPERINTEGRABLE SYSTEMS; STACKEL; CLASSIFICATION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This manuscript aims to resolve the Hamilton-Jacobi equations in an electromagnetic field by two methods. The first uses the separation of variables technique with Staeckel boundary conditions, whereas the second uses the Newtonian formalism to solve the same example. Our results demonstrate that the Hamilton-Jacobi variables can be completely detached by using separation of variables technique with Staeckel boundary conditions that correspond to other results using Newtonian formalism.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 27 条
[1]  
[Anonymous], THEORETICAL MATH PHY
[2]   Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stackel Transform [J].
Ballesteros, Angel ;
Enciso, Alberto ;
Herranz, Francisco J. ;
Ragnisco, Orlando ;
Riglioni, Danilo .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[3]   Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrodinger equation. I. The completeness and Robertson conditions [J].
Benenti, S ;
Chanu, C ;
Rastelli, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5183-5222
[4]   From Stackel systems to integrable hierarchies of PDE's: Benenti class of separation relations [J].
Blaszak, M ;
Marciniak, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
[5]   THE LAGRANGIAN THEORY OF STACKEL SYSTEMS [J].
BROUCKE, R .
CELESTIAL MECHANICS, 1981, 25 (02) :185-193
[6]  
Charlier C.V.L., 1902, MECH HIMMELS VORLESU, V1
[7]   Classification of the quantum two-dimensional superintegrable systems with quadratic integrals and the Stackel transforms [J].
Daskaloyannis, C. ;
Tanoudis, Y. .
PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) :853-861
[8]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[9]   Three-component Stackel potentials satisfying recent estimates of Milky Way parameters [J].
Famaey, B ;
Dejonghe, H .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 340 (03) :752-762
[10]  
Garfinkel B., 1966, SPACE MATH 1, V5, P40