Multiplicity and existence of solutions for generalized quasilinear Schrodinger equations with sign-changing potentials

被引:1
|
作者
Huang, Chen [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Business Sch, Shanghai, Peoples R China
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equations; Sign-changing potentials; Symmetric Mountain Pass Theorem; Morse theory; SOLITON-SOLUTIONS;
D O I
10.1186/s13661-020-01369-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of generalized quasilinear Schrodinger equations - div(l2(u).u) + l(u)l (u)|. u|2 + V(x)u = f (u), x. RN, where l(t) : R. R+ is a nondecreasing function with respect to |t|, the potential function V is allowed to be sign- changing so that the Schrodinger operator - + V possesses a finite-dimensional negative space. We obtain existence and multiplicity results for the problem via the Symmetric Mountain Pass Theorem and Morse theory.
引用
收藏
页数:17
相关论文
共 50 条