Re-ranking Biomedical Literature for Precision Medicine with Pre-trained Neural Models

被引:0
作者
Jiazhao Li [1 ,2 ]
Murali, Adharsh [2 ]
Qiaozhu Mei [1 ]
Vydiswaran, V. G. Vinod [1 ,2 ]
机构
[1] Univ Michigan, Sch Informat, Ann Arbor, MI USA
[2] Univ Michigan, Med Sch, Dept Learning Hlth Sci, Ann Arbor, MI USA
来源
2020 8TH IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2020) | 2020年
关键词
biomedical retrieval; pretrained models; BERT;
D O I
10.1109/ICHI48887.2020.9374401
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a biomedical literature retrieval approach that incorporates a domain-specific BERT model as an auxiliary re-ranker. Experiments on TREC Precision Medicine dataset show its effectiveness in improving retrieval performance by 6.2% in inferred NDCG and 6.8% in R-precision over the best-published results. The contribution of this study is to provide evidence of incorporating BERT in a biomedical literature retrieval system, which serves the overall goal to improve the information retrieval for precision medicine.
引用
收藏
页码:511 / 513
页数:3
相关论文
共 13 条
  • [1] Reciprocal Rank Fusion outperforms Condorcet and Individual Rank Learning Methods
    Cormack, Gordon V.
    Clarke, Charles L. A.
    Buettcher, Stefan
    [J]. PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 758 - 759
  • [2] Devlin J, 2019, Arxiv, DOI arXiv:1810.04805
  • [3] Goodwin T., 2017, Proceedings of TREC-PM, P1
  • [4] Lee Jinhyuk, 2019, arXiv
  • [5] Liu J., 2018, P 27 TEXT RETRIEVAL
  • [6] Nogueira R, 2020, Arxiv, DOI arXiv:1901.04085
  • [7] Oleynik Michel., 2018, TREC
  • [8] Roberts Kirk, 2018, NIST SPECIAL PUBLICA, V500-331
  • [9] Denoising Clinical Notes for Medical Literature Retrieval with Convolutional Neural Model
    Soldaini, Luca
    Yates, Andrew
    Goharian, Nazli
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2307 - 2310
  • [10] Wu YH, 2016, Arxiv, DOI arXiv:1609.08144