Interfacial thermal resistance between nanoconfined water and silicon: Impact of temperature and silicon phase

被引:9
作者
Goncalves, William [1 ]
Isaiev, Mykola [2 ]
Lacroix, David [2 ]
Gomes, Severine [1 ]
Termentzidis, Konstantinos [1 ]
机构
[1] Univ Lyon, INSA Lyon, CNRS, CETHIL,UMR5008, F-69621 Villeurbanne, France
[2] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
关键词
Nanoscale heat transfer; Kapitza resistance; Silicon; Molecular simulations; KAPITZA RESISTANCE; MOLECULAR-DYNAMICS; MODEL; DEPENDENCE; GRAPHENE;
D O I
10.1016/j.surfin.2022.102188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations are used to investigate the interfacial thermal resistance (Kapitza resistance) between crystalline or amorphous silicon and nanoconfined water at nanoscale. The simulations are performed under various conditions such as: different silicon phases (crystalline or amorphous), various water slab thicknesses, average system temperature and temperature difference between the thermostats. The results indicate that the Kapitza resistance is larger between crystalline silicon slabs and water (asymptotic to 1.2 10(-8) K m(2) W-1) than between amorphous silicon slabs and water (asymptotic to 0.7 10(-8) K m(2) W-1), which can be interpreted as a density effect using the acoustic mismatch model. We have not observed significant size effects related to the water slab thickness on the Kapitza resistance nor on the thermal conductivity of the nanoconfined water. Furthermore, the interfacial thermal resistance is linearly impacted by temperature unless the temperature difference between the thermostats is larger than 50 K. The presented results provide new insights in nano heat transfer in presence of a solid/liquid interface.
引用
收藏
页数:8
相关论文
共 53 条
[31]   Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics [J].
Merabia, Samy ;
Termentzidis, Konstantinos .
PHYSICAL REVIEW B, 2012, 86 (09)
[32]   Comparative assessment of the ELBA coarse-grained model for water [J].
Orsi, Mario .
MOLECULAR PHYSICS, 2014, 112 (11) :1566-1576
[33]   Wetting of single crystalline and amorphous silicon surfaces: effective range of intermolecular forces for wetting [J].
Ozcelik, H. Gokberk ;
Ozdemir, A. Cihan ;
Kim, Bohung ;
Barisik, Murat .
MOLECULAR SIMULATION, 2020, 46 (03) :224-234
[34]   Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces [J].
Pham, An ;
Barisik, Murat ;
Kim, BoHung .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
[35]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[36]   PROPAGATION OF SOUND IN WATER - MOLECULAR-DYNAMICS STUDY [J].
RAHMAN, A ;
STILLINGER, FH .
PHYSICAL REVIEW A, 1974, 10 (01) :368-378
[37]   Nonequilibrium molecular dynamics simulations of the thermal conductivity of water: A systematic investigation of the SPC/E and TIP4P/2005 models [J].
Roemer, Frank ;
Lervik, Anders ;
Bresme, Fernando .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (07)
[38]   NUMERICAL-INTEGRATION OF CARTESIAN EQUATIONS OF MOTION OF A SYSTEM WITH CONSTRAINTS - MOLECULAR-DYNAMICS OF N-ALKANES [J].
RYCKAERT, JP ;
CICCOTTI, G ;
BERENDSEN, HJC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (03) :327-341
[39]   MOLECULAR-DYNAMICS STUDY OF A 3-DIMENSIONAL ONE-COMPONENT MODEL FOR DISTORTIVE PHASE-TRANSITIONS [J].
SCHNEIDER, T ;
STOLL, E .
PHYSICAL REVIEW B, 1978, 17 (03) :1302-1322
[40]   Temperature dependence of thermal resistance at a solid/liquid interface [J].
Song, Ge ;
Min, Chen .
MOLECULAR PHYSICS, 2013, 111 (07) :903-908