Interfacial thermal resistance between nanoconfined water and silicon: Impact of temperature and silicon phase

被引:9
作者
Goncalves, William [1 ]
Isaiev, Mykola [2 ]
Lacroix, David [2 ]
Gomes, Severine [1 ]
Termentzidis, Konstantinos [1 ]
机构
[1] Univ Lyon, INSA Lyon, CNRS, CETHIL,UMR5008, F-69621 Villeurbanne, France
[2] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
关键词
Nanoscale heat transfer; Kapitza resistance; Silicon; Molecular simulations; KAPITZA RESISTANCE; MOLECULAR-DYNAMICS; MODEL; DEPENDENCE; GRAPHENE;
D O I
10.1016/j.surfin.2022.102188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations are used to investigate the interfacial thermal resistance (Kapitza resistance) between crystalline or amorphous silicon and nanoconfined water at nanoscale. The simulations are performed under various conditions such as: different silicon phases (crystalline or amorphous), various water slab thicknesses, average system temperature and temperature difference between the thermostats. The results indicate that the Kapitza resistance is larger between crystalline silicon slabs and water (asymptotic to 1.2 10(-8) K m(2) W-1) than between amorphous silicon slabs and water (asymptotic to 0.7 10(-8) K m(2) W-1), which can be interpreted as a density effect using the acoustic mismatch model. We have not observed significant size effects related to the water slab thickness on the Kapitza resistance nor on the thermal conductivity of the nanoconfined water. Furthermore, the interfacial thermal resistance is linearly impacted by temperature unless the temperature difference between the thermostats is larger than 50 K. The presented results provide new insights in nano heat transfer in presence of a solid/liquid interface.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects [J].
Alexeev, Dmitry ;
Chen, Jie ;
Walther, Jens H. ;
Giapis, Konstantinos P. ;
Angelikopoulos, Panagiotis ;
Koumoutsakos, Petros .
NANO LETTERS, 2015, 15 (09) :5744-5749
[2]   Kapitza resistance at water-graphene interfaces [J].
Alosious, Sobin ;
Kannam, Sridhar Kumar ;
Sathian, Sarith P. ;
Todd, B. D. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (22) :224703
[3]   Prediction of Kapitza resistance at fluid-solid interfaces [J].
Alosious, Sobin ;
Kannam, Sridhar Kumar ;
Sathian, Sarith P. ;
Todd, B. D. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (19)
[4]   Temperature-dependent capillary forces at nano-contacts for estimating the heat conduction through a water meniscus [J].
Assy, Ali ;
Gomes, Severine .
NANOTECHNOLOGY, 2015, 26 (35)
[5]   Analysis of heat transfer in the water meniscus at the tip-sample contact in scanning thermal microscopy [J].
Assy, Ali ;
Lefevre, Stephane ;
Chapuis, Pierre-Olivier ;
Gomes, Severine .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (44)
[6]   Temperature dependence of thermal resistance at the water/silicon interface [J].
Barisik, Murat ;
Beskok, Ali .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 77 :47-54
[7]   Structure of confined water [J].
Bellissent-Funel, MC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (41) :9165-9177
[8]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[9]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690