Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems

被引:6
作者
Leonardi, S. [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Nonhomogeneous differential operator; Singular term; (p-1)-superlinear parametric perturbation; Nonlinear regularity; Bifurcation-type theorem; Minimal positive solutions; Robin boundary condition; ELLIPTIC-EQUATIONS; (P;
D O I
10.1007/s13398-020-00830-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider nonlinear Robin problems driven by a nonhomogeneous differential operator and with a reaction that has a singular term and a parametric (p - 1)-superlinear perturbation which need not satisfy the Ambrosetti-Rabinowitz condition. We are looking for positive solutions. Using variational arguments and a suitable truncation and comparison techniques, we prove a bifurcation-type theorem which describes the set of positive solutions as the parameter lambda > 0 varies. Also we show the for every admissible value of the parameter lambda > 0, the problem has a smallest solution (u) over bar (lambda) and we determine the monotonicity and continuity properties of the map lambda -> (u) over bar (lambda).
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Nonlinear nonhomogeneous Robin problems with dependence on the gradient
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    BOUNDARY VALUE PROBLEMS, 2018, : 1 - 24
  • [32] Positive solutions for nonlinear Neumann problems with singular terms and convection
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 136 : 1 - 21
  • [33] Nonlinear, Nonhomogeneous Robin Problems with Indefinite Potential and General Reaction
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03) : 823 - 857
  • [34] Positive solutions for nonlinear Robin problems with convection
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1907 - 1920
  • [35] Parametric nonlinear resonant Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (11) : 2456 - 2480
  • [36] Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear fractional Laplacian problems
    Li, Bingliang
    Fu, Yongqiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [37] Nonlinear Nonhomogeneous Robin Problems with Superlinear Reaction Term
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ADVANCED NONLINEAR STUDIES, 2016, 16 (04) : 737 - 764
  • [38] Positive, Extremal and Nodal Solutions for Nonlinear Parametric Problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (01) : 261 - 285
  • [39] Positive Solutions for Nonlinear Robin Problems with Concave Terms
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Winowski, Krzysztof
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1145 - 1174
  • [40] Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    POSITIVITY, 2020, 24 (02) : 339 - 367