Existence results for an anisotropic nonlocal problem involving critical and discontinuous nonlinearities

被引:10
作者
dos Santos, Gelson C. G. [1 ]
Tavares, Leandro S. [2 ]
机构
[1] Univ Fed Para, Fac Matemat, Belem, Para, Brazil
[2] Univ Fed Cariri, Ctr Ciencias & Tecnol, Juazeiro Do Norte, Brazil
关键词
Anisotropic operator; local and nonlocal problem; variational method; Mountain Pass Theorem; concentration compactness-principle; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; SYSTEM;
D O I
10.1080/17476933.2020.1743982
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in the existence of solutions to the anisotropic nonlocal problem -Sigma(N)(i=1) partial derivative/partial derivative X-i )vertical bar partial derivative u/partial derivative X-i vertical bar(pi-2) partial derivative u/partial derivative X-i) = (integral(Omega) F(x, u))(r) f(x, u) + delta vertical bar u vertical bar(p*-2) u in Omega, u >= 0 in Omega, u = 0 on partial derivative Omega, (P)(delta) where Omega is a smooth bounded domain of R-N, N >= 2, delta = 0 or delta = 1,p(i) and r >= 0, 1 p(1) <= center dot center dot center dot p(N) < p* are parameters where p* = N<(p)over bar>/(N - (p) over bar) is a critical exponent, (p) over bar = N/Sigma(N)(i=1) 1/p(i) and (p) over bar < N. The nonlinearity f : Omega x R -> R can be discontinuous, has subcritical growth subcritical growth and F(x,t) = integral(t)(0) f(x,s) ds. Under appropriate assumptions on f, we obtain the existence of nontrivial solutions for (P)(delta) using the Ekeland's Variational Principle, Nonsmooth Mountain Pass Theorem and a Concentration Compactness-Principle.
引用
收藏
页码:731 / 755
页数:25
相关论文
共 50 条
[1]   Variational analysis of anisotropic Schrodinger equations without Ambrosetti-Rabinowitz-type condition [J].
Afrouzi, G. A. ;
Mirzapour, M. ;
Radulescu, Vicentiu D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01)
[2]   A Berestycki-Lions type result and applications [J].
Alves, Claudianor O. ;
Duarte, Ronaldo C. ;
Souto, Marco A. S. .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (06) :1859-1884
[3]   Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method [J].
Alves, Claudianor O. ;
Covei, Dragos-Patru .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 23 :1-8
[4]  
Alves CO, 2008, DIFFER INTEGRAL EQU, V21, P25
[5]   THE DUAL VARIATIONAL PRINCIPLE AND ELLIPTIC PROBLEMS WITH DISCONTINUOUS NONLINEARITIES [J].
AMBROSETTI, A ;
BADIALE, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (02) :363-373
[6]  
[Anonymous], 2001, Nonconvex Optim. Appl.
[7]  
[Anonymous], 1996, Commun. Appl. Nonlinear Anal.
[8]   Existence of Solutions for Semilinear Nonlocal Elliptic Problems via a Bolzano Theorem [J].
Arcoya, David ;
Leonori, Tommaso ;
Primo, Ana .
ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) :87-104
[9]   A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2018, 31 (04) :1516-1534
[10]  
Bear J., 2013, Dynamics of Fluids in Porous Media