Saddle towers with infinitely many ends

被引:7
作者
Mazet, Laurent [1 ]
Rodriguez, M. Magdalena [2 ]
Traizet, Martin [1 ]
机构
[1] Univ Tours, Dept Math & Phys Theor, F-37200 Tours, France
[2] Fac Complutense Madrid, Dept Algebra, Madrid 28040, Spain
关键词
minimal surface; Jenkins-Serrin; saddle tower; limit end;
D O I
10.1512/iumj.2007.56.3130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We point out an application of a Theorem of Jenkins and Serrin to construct singly-periodic minimal surfaces which have, in the quotient, genus zero, countably many ends and one limit end. These surfaces have bounded curvature and infinite total curvature.
引用
收藏
页码:2821 / 2838
页数:18
相关论文
共 19 条
[1]  
[Anonymous], 1983, SEMINAR MINIMAL SUBM
[2]   SIZE OF A STABLE MINIMAL SURFACE IN R3 [J].
BARBOSA, JL ;
DOCARMO, M .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (02) :515-528
[3]   DIRICHLET PROBLEM FOR MINIMAL SURFACE EQUATION ON UNBOUNDED-DOMAINS [J].
COLLIN, P ;
KRUST, R .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (04) :443-462
[4]   Higher genus Riemann minimal surfaces [J].
Hauswirth, Laurent ;
Pacard, Frank .
INVENTIONES MATHEMATICAE, 2007, 169 (03) :569-620
[5]  
JENKINS H, 1966, ARCH RATION MECH AN, V21, P321
[6]   EMBEDDED MINIMAL-SURFACES DERIVED FROM SCHERK EXAMPLES [J].
KARCHER, H .
MANUSCRIPTA MATHEMATICA, 1988, 62 (01) :83-114
[7]  
KARCHER H, 1992, P GLOB AN MOD MATH O, P119
[8]   The space of doubly periodic minimal tori with parallel ends:: Standard examples [J].
Magdalena Rodriguez, M. .
MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (01) :103-122
[9]   The plateau problem at infinity for horizontal ends and genus 1 [J].
Mazet, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) :15-64
[10]   Demonstration that there does not exist a solution to he minimal surfaces equation [J].
Mazet, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (07) :577-586