PROPAGATION OF SINGULARITIES ON AdS SPACETIMES FOR GENERAL BOUNDARY CONDITIONS AND THE HOLOGRAPHIC HADAMARD CONDITION

被引:11
作者
Gannot, Oran [1 ]
Wrochna, Michal [2 ]
机构
[1] Northwestern Univ, Dept Math, Lunt Hall, Evanston, IL 60208 USA
[2] Univ Cergy Pontoise, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, France
关键词
propagation of singularities; Klein-Gordon equation; anti-de Sitter spacetimes; quantum field theory on curved spacetimes; Hadamard states; MASSIVE WAVE-EQUATION; UNIQUE CONTINUATION; ELLIPTIC THEORY; INFINITY; MANIFOLDS; OPERATORS; METRICS;
D O I
10.1017/S147474802000002X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Klein-Gordon equation on asymptotically anti-de-Sitter spacetimes subject to Neumann or Robin (or Dirichlet) boundary conditions and prove propagation of singularities along generalized broken bicharacteristics. The result is formulated in terms of conormal regularity relative to a twisted Sobolev space. We use this to show the uniqueness, modulo regularizing terms, of parametrices with prescribed b-wavefront set. Furthermore, in the context of quantum fields, we show a similar result for two-point functions satisfying a holographic Hadamard condition on the b-wavefront set.
引用
收藏
页码:67 / 127
页数:61
相关论文
共 50 条
[1]   A renormalized index theorem for some complete asymptotically regular metrics: The Gauss-Bonnet theorem [J].
Albin, Pierre .
ADVANCES IN MATHEMATICS, 2007, 213 (01) :1-52
[2]   The Klein-Gordon equation in the Anti-de Sitter cosmology [J].
Bachelot, Alain .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (06) :527-554
[3]   Stueckelberg massive electromagnetism in de Sitter and anti-de Sitter spacetimes: Two-point functions and renormalized stress-energy tensors [J].
Belokogne, Andrei ;
Folacci, Antoine ;
Queva, Julien .
PHYSICAL REVIEW D, 2016, 94 (10)
[4]   POSITIVE ENERGY IN ANTI-DE SITTER BACKGROUNDS AND GAUGED EXTENDED SUPERGRAVITY [J].
BREITENLOHNER, P ;
FREEDMAN, DZ .
PHYSICS LETTERS B, 1982, 115 (03) :197-201
[5]   STABILITY IN GAUGED EXTENDED SUPERGRAVITY [J].
BREITENLOHNER, P ;
FREEDMAN, DZ .
ANNALS OF PHYSICS, 1982, 144 (02) :249-281
[6]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[7]   Fundamental solutions for the wave operator on static Lorentzian manifolds with timelike boundary [J].
Dappiaggi, Claudio ;
Drago, Nicolo ;
Ferreira, Hugo .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (10) :2157-2186
[8]   Ground states of a Klein-Gordon field with Robin boundary conditions in global anti-de Sitter spacetime [J].
Dappiaggi, Claudio ;
Ferreira, Hugo R. C. ;
Marta, Alessio .
PHYSICAL REVIEW D, 2018, 98 (02)
[9]   On the algebraic quantization of a massive scalar field in anti-de Sitter spacetime [J].
Dappiaggi, Claudio ;
Ferreira, Hugo R. C. .
REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (02)
[10]   Hadamard states for a scalar field in anti-de Sitter spacetime with arbitrary boundary conditions [J].
Dappiaggi, Claudio ;
Ferreira, Hugo R. C. .
PHYSICAL REVIEW D, 2016, 94 (12)