2D Fillers Highly Boost the Discharge Energy Density of Polymer-Based Nanocomposites with Trilayered Architecture

被引:93
作者
Bai, Hairui [1 ]
Zhu, Kun [1 ]
Wang, Zhe [2 ,3 ]
Shen, Bo [1 ]
Zhai, Jiwei [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Civil Engn Mat, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Xi An Jiao Tong Univ, Minist Educ, Key Lab, Elect Mat Res Lab, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China
关键词
energy storage; nanocomposites; trilayered architecture; 2D; BORON-NITRIDE NANOSHEETS; POLY(VINYLIDENE FLUORIDE); STORAGE PERFORMANCE; HIGH PERMITTIVITY; HIGH-TEMPERATURE; DIELECTRIC LOSS; EFFICIENCY; CAPACITORS; NANOPARTICLES; FILMS;
D O I
10.1002/adfm.202102646
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new class of trilayered architecture blends polymer-based nanocomposites with excellent discharge energy densities (U-dis) is presented. The preferable energy storage performance is achieved in sandwich structured nanocomposite (PIP) films. The outer polarization-layers (P-layer) of the PIP film are composed of Sr2Nb2O7 nanosheets (SNONSs) as well as boron nitride nanosheets (BNNSs) dispersed in poly(vinylidene fluoride) (PVDF)/ polymethyl methacrylate (PMMA) blend polymer matrix (BPM) to provide high dielectric constant, while PVDF/PMMA with BNNSs forms the central insulation-layer (I-layer) to offer high dielectric breakdown strength (E-b) of the resulting nanocomposite films. The dielectric performance, Weibull breakdown strength, and energy storage capacity of single and multi-layer nanocomposites as a function of filler content are systematically examined. The evolution of electric trees is simulated via finite element methods to verify the experimental dielectric breakdown results in single layer nanocomposite films. The PIP film with optimized filler content displays a discharge energy density of 31.42 J cm(-3) with a significantly improved charge-discharge efficiency of approximate to 71% near the Weibull breakdown strength of 655.16 MV m(-1), which is the highest among the polymer-based nanocomposites under the equivalent dielectric breakdown strength at present.
引用
收藏
页数:8
相关论文
共 66 条
[1]   Electronic parameters of Sr2Nb2O7 and chemical bonding [J].
Atuchin, V. V. ;
Grivel, J. -C. ;
Korotkov, A. S. ;
Zhang, Zhaoming .
JOURNAL OF SOLID STATE CHEMISTRY, 2008, 181 (06) :1285-1291
[2]   Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@BN nanofibers [J].
Bai, Hairui ;
Ge, Guanglong ;
He, Xia ;
Shen, Bo ;
Zhai, Jiwei ;
Pan, Hui .
COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 195
[3]   Negatively Charged Nanosheets Significantly Enhance the Energy-Storage Capability of Polymer-Based Nanocomposites [J].
Bao, Zhiwei ;
Hou, Chuangming ;
Shen, Zhonghui ;
Sun, Haoyang ;
Zhang, Genqiang ;
Luo, Zhen ;
Dai, Zhizhan ;
Wang, Chengming ;
Chen, Xiaowei ;
Li, Liangbin ;
Yin, Yuewei ;
Shen, Yang ;
Li, Xiaoguang .
ADVANCED MATERIALS, 2020, 32 (25)
[4]   Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites [J].
Bi, Meihua ;
Hao, Yanan ;
Zhang, Jiameng ;
Lei, Ming ;
Bi, Ke .
NANOSCALE, 2017, 9 (42) :16386-16395
[5]   Ultrahigh discharge efficiency and energy density achieved at low electric fields in sandwich-structured polymer films containing dielectric elastomers [J].
Chen, Jie ;
Wang, Yifei ;
Xu, Xinwei ;
Yuan, Qibin ;
Niu, Yujuan ;
Wang, Qing ;
Wang, Hong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3729-3736
[6]   A blended binary composite of poly(vinylidene fluoride) and poly(methyl methacrylate) exhibiting excellent energy storage performances [J].
Chi, Qingguo ;
Zhou, Yinhua ;
Yin, Chao ;
Zhang, Yue ;
Zhang, Changhai ;
Zhang, Tiandong ;
Feng, Yu ;
Zhang, Yongquan ;
Chen, Qingguo .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (45) :14148-14158
[7]  
Chu BJ, 2006, IEEE T DIELECT EL IN, V13, P1162, DOI 10.1109/TDEI.2006.1714943
[8]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   An Inside-Out Approach to Storing Electrostatic Energy [J].
Ducharme, Stephen .
ACS NANO, 2009, 3 (09) :2447-2450