VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients

被引:86
作者
Lee, Hyung-Chul [1 ]
Park, Yoonsang [1 ]
Yoon, Soo Bin [1 ]
Yang, Seong Mi [1 ]
Park, Dongnyeok [1 ]
Jung, Chul-Woo [1 ]
机构
[1] Seoul Natl Univ, Seoul Natl Univ Hosp, Coll Med, Dept Anesthesiol & Pain Med, Seoul, South Korea
关键词
PREDICTION; COLLABORATION;
D O I
10.1038/s41597-022-01411-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.
引用
收藏
页数:9
相关论文
共 21 条
[1]   Intraoperative Analgesia-Nociception Monitors: Where We Are and Where We Want To Be [J].
Anderson, T. Anthony .
ANESTHESIA AND ANALGESIA, 2020, 130 (05) :1261-1263
[2]   Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs [J].
Barton, Christopher ;
Chettipally, Uli ;
Zhou, Yifan ;
Jiang, Zirui ;
Lynn-Palevsky, Anna ;
Le, Sidney ;
Calvert, Jacob ;
Das, Ritankar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 109 :79-84
[3]   The Technology of Processed Electroencephalogram Monitoring Devices for Assessment of Depth of Anesthesia [J].
Fahy, Brenda G. ;
Chau, Destiny F. .
ANESTHESIA AND ANALGESIA, 2018, 126 (01) :111-117
[4]  
Ganapathy Nagarajan, 2018, Yearb Med Inform, V27, P98, DOI 10.1055/s-0038-1667083
[5]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[6]  
Jung C-W., 2022, OPEN SCI FRAMEWORK, DOI [10.17605/OSF.IO/DTC45, DOI 10.17605/OSF.IO/DTC45]
[7]  
Lee H-C., 2022, VITALDB EXAMPLES SAM, DOI [10.5281/zenodo.6321522, DOI 10.5281/ZENODO.6321522]
[8]  
Lee H-C., 2022, VITALDBVITALUTILS UT, DOI [10.5281/zenodo.6321507, DOI 10.5281/ZENODO.6321507]
[9]   Data Driven Investigation of Bispectral Index Algorithm [J].
Lee, Hyung-Chul ;
Ryu, Ho-Geol ;
Park, Yoonsang ;
Yoon, Soo Bin ;
Yang, Seong Mi ;
Oh, Hye-Won ;
Jung, Chul-Woo .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil A Deep Learning Approach [J].
Lee, Hyung-Chul ;
Ryu, Ho-Geol ;
Chung, Eun-Jin ;
Jung, Chul-Woo .
ANESTHESIOLOGY, 2018, 128 (03) :492-501