On negatively curved Finsler manifolds of scalar curvature

被引:22
作者
Mo, XH [1 ]
Shen, ZM
机构
[1] Beijing Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2005年 / 48卷 / 01期
关键词
D O I
10.4153/CMB-2005-010-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension it greater than or equal to 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 26 条
[1]  
Akbar-Zadeh H, 1988, Acad. R. Belg. Bull. Cl. Sci., V74, P281
[2]  
Bacso S, 1997, PUBL MATH-DEBRECEN, V51, P385
[3]   On Randers spaces of constant flag curvature [J].
Bao, D ;
Robles, C .
REPORTS ON MATHEMATICAL PHYSICS, 2003, 51 (01) :9-42
[4]  
BAO D, IN PRESS J DIFF GEOM
[5]  
Bao D, 2000, An introduction to Riemann-Finsler geometry
[8]  
BERWALD L, 1929, MONATSH MATH PHYS, V36, P315
[9]  
Berwald L., 1928, Atti Congr. Intern. Mat. Bologna, V4, P263
[10]  
Chen XY, 2003, OSAKA J MATH, V40, P87