Nonlinear simulations of elastic fingering in a Hele-Shaw cell

被引:23
作者
Zhao, Meng [1 ]
Belmonte, Andrew [2 ]
Li, Shuwang [1 ]
Li, Xiaofan [1 ]
Lowengrub, John [3 ]
机构
[1] IIT, Dept Appl Math, Chicago, IL 60616 USA
[2] Penn State Univ, Dept Math, WG Pritchard Labs, University Pk, PA 16802 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Hele-Shaw; Elastic boundary; Viscous fingering; Boundary integral; Self-similar; PATTERN-FORMATION; FLOW; STIFFNESS; DYNAMICS; GROWTH;
D O I
10.1016/j.cam.2015.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is motivated by the recent experiments of two reacting fluids in a Hele-Shaw cell (Podgorski et al., 2007) and associated linear stability analysis of a curvature weakening model (He et al., 2012). Unlike the classical Hele-Shaw problem posed for moving interfaces with surface tension, the curvature weakening model is concerned with a newly-produced gel-like phase that stiffens the interface, thus the interface is modeled as an elastic membrane with curvature dependent rigidity that reflects geometrically induced breaking of intermolecular bonds. Here we are interested in exploring the longtime interface dynamics in the nonlinear regime. We perform simulations using a spectrally accurate boundary integral method, together with a rescaling scheme to dramatically speed up the intrinsically slow evolution of the interface. We find curvature weakening inhibits tip-splitting and promotes side-branching morphology. At long times, numerical results reveal that there exist "nonlinear, stable, self-similarly evolving morphologies. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:394 / 407
页数:14
相关论文
共 34 条
[1]   THE FORMATION OF PATTERNS IN NONEQUILIBRIUM GROWTH [J].
BENJACOB, E ;
GARIK, P .
NATURE, 1990, 343 (6258) :523-530
[2]   Stationary patterns in centrifugally driven interfacial elastic fingering [J].
Carvalho, Gabriel D. ;
Gadelha, Hermes ;
Miranda, Jose A. .
PHYSICAL REVIEW E, 2014, 90 (06)
[3]   Elastic fingering in rotating Hele-Shaw flows [J].
Carvalho, Gabriel D. ;
Gadelha, Hermes ;
Miranda, Jose A. .
PHYSICAL REVIEW E, 2014, 89 (05)
[4]   Interfacial elastic fingering in Hele-Shaw cells: A weakly nonlinear study [J].
Carvalho, Gabriel D. ;
Miranda, Jose A. ;
Gadelha, Hermes .
PHYSICAL REVIEW E, 2013, 88 (05)
[5]   A phase field approach in the numerical study of the elastic bending energy for vesicle membranes [J].
Du, Q ;
Liu, C ;
Wang, XQ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (02) :450-468
[6]   LAPLACE EQUATION AND THE DIRICHLET-NEUMANN MAP IN MULTIPLY CONNECTED DOMAINS [J].
GREENBAUM, A ;
GREENGARD, L ;
MCFADDEN, GB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 105 (02) :267-278
[7]   Spiral precipitation patterns in confined chemical gardens [J].
Haudin, Florence ;
Cartwright, Julyan H. E. ;
Brau, Fabian ;
De Wit, A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (49) :17363-17367
[8]   MODELING AN ELASTIC FINGERING INSTABILITY IN A REACTIVE HELE-SHAW FLOW [J].
He, Andong ;
Lowengrub, John ;
Belmonte, Andrew .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (03) :842-856
[9]  
Hele-Shaw H.S., 1898, Nature (London), V58, P520, DOI DOI 10.1038/058520A0
[10]   REMOVING THE STIFFNESS FROM INTERFACIAL FLOW WITH SURFACE-TENSION [J].
HOU, TY ;
LOWENGRUB, JS ;
SHELLEY, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :312-338