Equivalent-core calculation of core-level relaxation energies in photoelectron spectroscopy: A molecular-orbital approach

被引:9
作者
Chen, Y [1 ]
Zhuang, G
Ross, PN
Van Hove, MA
Fadley, CS
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA
[3] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
D O I
10.1063/1.477303
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The equivalent-core approximation is implemented in a novel way so as to calculate core-level relaxation energies in photoelectron spectroscopy. The method is based on self-consistent field (SCF) Hartree-Fock molecular-orbital calculations via linear combinations of atomic orbitals, and involves evaluating the difference of sums of two-electron Coulomb and exchange integrals, for all electrons in an atom and in its equivalent-core ion. By thus avoiding SCF calculations with a core hole present (the true final state of photoemission), this procedure is shown to significantly save computing time in comparison with an exact SCF direct-hole calculation. Application of the method in single atoms and selected molecules shows about a 10% difference with respect to direct-hole calculation results. The approximation introduces about 1-6 eV errors compared to the experimental results of gas phase molecules. This method thus should be a generally useful procedure for estimating relaxation energies in core spectra. (C) 1998 American Institute of Physics. [S0021-9606(98)30540-1].
引用
收藏
页码:6527 / 6532
页数:6
相关论文
共 28 条
[1]   SURFACE CORE-LEVEL SHIFTS OF SOME 4D-METAL SINGLE-CRYSTAL SURFACES - EXPERIMENTS AND AB-INITIO CALCULATIONS [J].
ANDERSEN, JN ;
HENNIG, D ;
LUNDGREN, E ;
METHFESSEL, M ;
NYHOLM, R ;
SCHEFFLER, M .
PHYSICAL REVIEW B, 1994, 50 (23) :17525-17533
[2]   Core level binding energy shifts in interfaces between 4d and alkali metals [J].
Andersen, JN ;
Lundgren, E ;
Nyholm, R .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1995, 75 :225-232
[3]   The importance of 2s bonding contributions for the core level binding energies in organic compounds [J].
Bagus, PS ;
Illas, F ;
Casanovas, J .
CHEMICAL PHYSICS LETTERS, 1997, 272 (3-4) :168-172
[4]   MOLECULAR-ORBITAL THEORY FOR THE ANALYSIS OF PHOTOEMISSION SPECTRA [J].
BAGUS, PS ;
COOLBAUGH, D ;
KOWALCZYK, SP ;
PACCHIONI, G ;
PARMIGIANI, F .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1990, 51 :69-74
[5]   THEORETICAL MODELS FOR INTERPRETATION OF ESCA SPECTRA [J].
BASCH, H .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1974, 5 (NOV-D) :463-500
[6]  
BINNO G, UNPUB PHYS CHEM MINE
[7]   Accurate density functional calculation of core electron binding energies .5. Application to nitriles. Model molecules for polyacrylonitrile revisited [J].
Bureau, C ;
Chong, DP ;
Lecayon, G ;
Delhalle, J .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1997, 83 (2-3) :227-234
[9]   RELAXATION CORRECTION TO CORE-LEVEL BINDING-ENERGY SHIFTS IN SMALL MOLECULES [J].
DAVIS, DW ;
SHIRLEY, DA .
CHEMICAL PHYSICS LETTERS, 1972, 15 (02) :185-+
[10]   INPLANE CHARGE-DISTRIBUTION IN POTASSIUM-INTERCALATED GRAPHITE [J].
DICENZO, SB ;
BASU, S ;
WERTHEIM, GK ;
BUCHANAN, DNE ;
FISCHER, JE .
PHYSICAL REVIEW B, 1982, 25 (02) :620-626