Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol

被引:68
作者
Li, Xinliang [1 ]
Liu, Guoliang [1 ]
Xu, Di [1 ]
Hong, Xinlin [1 ]
Tsang, Shik Chi Edman [2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Univ Oxford, Dept Chem, Wolfson Catalysis Ctr, Oxford OX1 3QR, England
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORK; PD/ZNO CATALYSTS; ALLOY CATALYSTS; CARBON-DIOXIDE; ZNO; SURFACE; ZIF-8; HETEROSTRUCTURES; ADSORPTION; CHALLENGES;
D O I
10.1039/c9ta03410b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
y Methanol synthesis from CO2 hydrogenation is an important reaction for future fuel and chemical production as the so-called "methanol economy" in the 21st century. Pd-ZnO catalysts are known to be active for this reaction, but the fabrication of ultrasmall PdZn alloy nanoparticles (NPs) on an oxygen defective ZnO surface as selective and efficient catalysts remains a challenge. Here, we report an epitaxial growth of a thin zeolitic imidazolate framework-8 (ZIF-8) overcoat on ZnO nanorods as a support to confine the synthesis of subnanometric Pd NPs at a ZnO/ZIF-8 interface for CO2 hydrogenation. The thickness of the ZIF-8 overcoat can be tuned by the etching time and the etching process enables the creation of oxygen defects on the ZnO surface. It is also found that increasing the ZIF-8 thickness disfavors the formation of the PdZn alloy upon H-2 reduction due to the spatial isolation effect. In CO2 hydrogenation, the optimized Pd-Z@Z8-1 catalyst shows the best performance, with a methanol selectivity of 66-78% and a methanol yield of 12.1-19.8 g g(Pd)(-1) h(-1) at 523-563 K and 4.5 MPa, which are ranked among the top values over Pd based catalysts reported in the literature under comparable conditions. Interestingly, we obtain a volcanic relationship between the methanol yield and ZIF-8 thickness. It thus appears to require a proper balance to optimize the activity between decreasing PdZn alloy sites and increasing ZnO defects with the increase in ZIF-8 thickness. From this study, we propose a synergetic catalysis mechanism between the PdZn alloy and surface defect enriched ZnO. It is believed that this work provides a novel "killing two birds with one stone" strategy to fabricate noble metal-metal oxide/MOF hybrid materials for catalytic applications.
引用
收藏
页码:23878 / 23885
页数:8
相关论文
共 54 条
[1]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[2]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[3]   PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI) [J].
Bahruji, H. ;
Bowker, M. ;
Jones, W. ;
Hayward, J. ;
Esquius, J. Ruiz ;
Morgan, D. J. ;
Hutchings, G. J. .
FARADAY DISCUSSIONS, 2017, 197 :309-324
[4]   Pd/ZnO catalysts for direct CO2 hydrogenation to methanol [J].
Bahruji, Hasliza ;
Bowker, Michael ;
Hutchings, Graham ;
Dimitratos, Nikolaos ;
Wells, Peter ;
Gibson, Emma ;
Jones, Wilm ;
Brookes, Catherine ;
Morgan, David ;
Lalev, Georgi .
JOURNAL OF CATALYSIS, 2016, 343 :133-146
[5]   Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas [J].
Barthel, Alexander ;
Saih, Youssef ;
Gimenez, Michel ;
Pelletier, Jeremie D. A. ;
Kuehn, F. E. ;
D'Elia, Valerio ;
Basset, Jean-Marie .
GREEN CHEMISTRY, 2016, 18 (10) :3116-3123
[6]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[7]   MECHANISM AND KINETICS OF METHANOL SYNTHESIS ON ZINC-OXIDE [J].
BOWKER, M ;
HOUGHTON, H ;
WAUGH, KC .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1981, 77 :3023-3036
[8]   Synergy of Contact between ZnO Surface Planes and PdZn Nanostructures: Morphology and Chemical Property Effects in the Intermetallic Sites for Selective 1,3-Butadiene Hydrogenation [J].
Castillejos-Lopez, Eva ;
Agostini, Giovanni ;
Di Michel, Marco ;
Iglesias-Juez, Ana ;
Bachiller-Baeza, Belen .
ACS CATALYSIS, 2017, 7 (01) :796-811
[9]   SYNTHESIS OF METHANOL .1. CATALYSTS AND KINETICS [J].
CHINCHEN, GC ;
DENNY, PJ ;
JENNINGS, JR ;
SPENCER, MS ;
WAUGH, KC .
APPLIED CATALYSIS, 1988, 36 (1-2) :1-65
[10]   Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites [J].
Fink, K .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (13) :1482-1489