Ion heat and parallel momentum transport by stochastic magnetic fields and turbulence

被引:4
作者
Chen, Chang-Chun [1 ]
Diamond, P. H. [1 ]
Tobias, S. M. [2 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
基金
美国国家科学基金会;
关键词
stochastic fields; nonlinear transport; magnetohydrodynamics; fusion plasma; GEODESIC ACOUSTIC MODE; TOKAMAK; ROTATION; INSTABILITY; STABILITY; SURFACES; ENTROPY;
D O I
10.1088/1361-6587/ac38b2
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theory of turbulent transport of parallel momentum and ion heat by the interaction of stochastic magnetic fields and turbulence is presented. Attention is focused on determining the kinetic stress and the compressive energy flux. A critical parameter is identified as the ratio of the turbulent scattering rate to the rate of parallel acoustic dispersion. For the parameter large, the kinetic stress takes the form of a viscous stress. For the parameter small, the quasilinear residual stress is recovered. In practice, the viscous stress is the relevant form, and the quasilinear limit is not observable. This is the principal prediction of this paper. A simple physical picture is developed and shown to recover the results of the detailed analysis.
引用
收藏
页数:13
相关论文
共 53 条
[1]  
Cao MPH, VIRT US TRANSP TASKF
[2]   Potential vorticity transport in weakly and strongly magnetized plasmas [J].
Chen, Chang-Chun ;
Diamond, Patrick H. ;
Singh, Rameswar ;
Tobias, Steven M. .
PHYSICS OF PLASMAS, 2021, 28 (04)
[3]   Potential Vorticity Mixing in a Tangled Magnetic Field [J].
Chen, Chang-Chun ;
Diamond, Patrick H. .
ASTROPHYSICAL JOURNAL, 2020, 892 (01)
[4]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[5]   An overview of intrinsic torque and momentum transport bifurcations in toroidal plasmas [J].
Diamond, P. H. ;
Kosuga, Y. ;
Guercan, Oe. D. ;
McDevitt, C. J. ;
Hahm, T. S. ;
Fedorczak, N. ;
Rice, J. E. ;
Wang, W. X. ;
Ku, S. ;
Kwon, J. M. ;
Dif-Pradalier, G. ;
Abiteboul, J. ;
Wang, L. ;
Ko, W. H. ;
Shi, Y. J. ;
Ida, K. ;
Solomon, W. ;
Jhang, H. ;
Kim, S. S. ;
Yi, S. ;
Ko, S. H. ;
Sarazin, Y. ;
Singh, R. ;
Chang, C. S. .
NUCLEAR FUSION, 2013, 53 (10)
[6]   Kinetic Stress and Intrinsic Flow in a Toroidal Plasma [J].
Ding, W. X. ;
Lin, L. ;
Brower, D. L. ;
Almagri, A. F. ;
Chapman, B. E. ;
Fiksel, G. ;
Den Hartog, D. J. ;
Sarff, J. S. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[7]   Stochastic magnetic field driven charge transport and zonal flow during magnetic reconnection [J].
Ding, W. X. ;
Brower, D. L. ;
Craig, D. ;
Chapman, B. E. ;
Ennis, D. ;
Fiksel, G. ;
Gangadhara, S. ;
Den Hartog, D. J. ;
Mirnov, V. V. ;
Prager, S. C. ;
Sarff, J. S. ;
Svidzinski, V. ;
Terry, P. W. ;
Yates, T. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[8]   Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary [J].
Evans, TE ;
Moyer, RA ;
Thomas, PR ;
Watkins, JG ;
Osborne, TH ;
Boedo, JA ;
Doyle, EJ ;
Fenstermacher, ME ;
Finken, KH ;
Groebner, RJ ;
Groth, M ;
Harris, JH ;
La Haye, RJ ;
Lasnier, CJ ;
Masuzaki, S ;
Ohyabu, N ;
Pretty, DG ;
Rhodes, TL ;
Reimerdes, H ;
Rudakov, DL ;
Schaffer, MJ ;
Wang, G ;
Zeng, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235003-1
[9]   Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas [J].
Evans, Todd E. ;
Moyer, Richard A. ;
Burrell, Keith H. ;
Fenstermacher, Max E. ;
Joseph, Ilon ;
Leonard, Anthony W. ;
Osborne, Thomas H. ;
Porter, Gary D. ;
Schaffer, Michael J. ;
Snyder, Philip B. ;
Thomas, Paul R. ;
Watkins, Jonathan G. ;
West, William P. .
NATURE PHYSICS, 2006, 2 (06) :419-423
[10]   PARTICLE-TRANSPORT AND ROTATION DAMPING DUE TO STOCHASTIC MAGNETIC-FIELD LINES [J].
FINN, JM ;
GUZDAR, PN ;
CHERNIKOV, AA .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (05) :1152-1155