Demand Forecasting for an Automotive Company with Neural Network and Ensemble Classifiers Approaches

被引:2
|
作者
Bottani, Eleonora [1 ]
Mordonini, Monica [1 ]
Franchi, Beatrice [1 ]
Pellegrino, Mattia [1 ]
机构
[1] Univ Parma, Dept Engn & Architecture, Viale Sci 181-A, I-43124 Parma, Italy
来源
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT I | 2021年 / 630卷
关键词
Demand forecasting; Automotive; ANN; AdaBoost; Gradient Boost;
D O I
10.1007/978-3-030-85874-2_14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes the development and testing of three machine learning technique for demand forecasting in the automotive industry: Artificial Neural Network (ANN) and two types of Ensemble Learning models, i.e. AdaBoost and Gradient Boost. These models demonstrate the great potential that machine learning has over traditional demand forecasting methods. These three models will be compared to each other on the basis of the coefficient of determination R-2 and it will be shown which model has the greatest accuracy.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 50 条
  • [21] Neural network ensemble operators for time series forecasting
    Kourentzes, Nikolaos
    Barrow, Devon K.
    Crone, Sven F.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (09) : 4235 - 4244
  • [22] Advanced Ensemble Adversarial Example on Unknown Deep Neural Network Classifiers
    Kwon, Hyun
    Kim, Yongchul
    Park, Ki-Woong
    Yoon, Hyunsoo
    Choi, Daeseon
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (10) : 2485 - 2500
  • [23] An ensemble learning framework for convolutional neural network based on multiple classifiers
    Guo, Yanyan
    Wang, Xin
    Xiao, Pengcheng
    Xu, Xinzheng
    SOFT COMPUTING, 2020, 24 (05) : 3727 - 3735
  • [24] Ensemble Methodology for Demand Forecasting
    Das Adhikari, Nimai Chand
    Garg, Rajat
    Datt, Shaivya
    Das, Lalit
    Deshpande, Srinivas
    Misra, Ashutosh
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 846 - 851
  • [25] An ensemble learning framework for convolutional neural network based on multiple classifiers
    Yanyan Guo
    Xin Wang
    Pengcheng Xiao
    Xinzheng Xu
    Soft Computing, 2020, 24 : 3727 - 3735
  • [26] Tourism demand forecasting using graph neural network
    Liang, Xuedong
    Li, Xiaoyan
    Shu, Lingli
    Wang, Xia
    Luo, Peng
    CURRENT ISSUES IN TOURISM, 2025, 28 (06) : 982 - 1001
  • [27] Demand forecasting by the neural network with discrete Fourier transform
    Yohda, M
    Saito-Arita, M
    Okada, A
    Suzuki, R
    Kakemoto, Y
    2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, : 779 - 782
  • [28] Demand forecasting for delivery platforms by using neural network
    Abbate, R.
    Manco, P.
    Caterino, M.
    Fera, M.
    Macchiaroli, R.
    IFAC PAPERSONLINE, 2022, 55 (10): : 607 - 612
  • [29] Artificial Neural Network for Indonesian Tourism Demand Forecasting
    Alamsyah, Andry
    Friscintia, Putu Bella Ayastri
    2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT), 2019, : 114 - 120
  • [30] A Hybrid Neural Network Model for Power Demand Forecasting
    Kim, Myoungsoo
    Choi, Wonik
    Jeon, Youngjun
    Liu, Ling
    ENERGIES, 2019, 12 (05)